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Abstract—With the advent of the multicore era, parallel
programming is becoming ubiquitous. Multithreading is a
common approach to benefit from these architectures. Hybrid
M :N libraries like MultiProcessor Communication (MPC)
or MARCEL reach high performance expressing fine-grain
parallelism by mapping M user-level threads onto N kernel-
level threads. However, such implementations skew the debug-
gers’ ability to distinguish one thread from another, because
only kernel threads can be handled. SUN MICROSYSTEMS’
THREAD DB API is an interface between the debugger and
the thread library allowing the debugger to inquire for thread
semantics details. In this paper we introduce the USER LEVEL
DB (ULDB) library, an implementation of the THREAD DB
interface abstracting the common features of user-level thread
libraries. ULDB gathers the generic algorithms required to
debug threads and provide the thread library with a small and
focused interface. We describe the usage of our library with
widely-used debuggers (GDB, DBX) and the integration into a
user-level thread library (GNUPTH) and two high-performance
hybrid libraries (MPC, MARCEL).
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I. INTRODUCTION

For a few years, the surge of clock frequency of processors
has reached a limit. Power consumption and heating con-
straints prevent most of the processors from being clocked
faster than 4 GHz (the IBM POWER6 is the only one
cadenced faster than 5 GHz [1]). That is why industry
started to increase the number of cores on a die. A die
generally contains between 2 and 16 cores, but they can
sometimes be up to 64 or 80 [2]. In the domain of high
performance computing (HPC), multithreading is a program-
ming model used to exploit such architectures. This can be
done through explicit multithreading (e.g., POSIX threads)
or language-generated multithreading (e.g., OPENMP [3]).
Hybrid thread-libraries (mixing user-level and kernel-level
threads, see Section II) fit the requirements of HPC by
exploiting efficiently parallel architectures and avoiding un-
necessary and costly system calls.

Debugging of multithreaded processes is much compli-
cated than single thread processes. First of all, the debugger
needs the support of the thread library. This can be done
through the THREAD DB API [4] introduced by SUN
MICROSYSTEMS. This API is implemented by the thread
library and exposed to the debugger. It allows the debugger
to handle thread semantics. Linux NPTL [5] and Solaris
Threads provide a more or less complete implementation of

THREAD DB, which lets them be controlled by common
debuggers like GDB [6], DBX [7] or TOTALVIEW [8].

The use of user-level or hybrid thread libraries provides
good performances but most of these thread libraries do
not implement the THREAD DB API. Without this accurate
support, debuggers can only handle LWPs (Light Weight
Process) distinction, rather than end-user level threads.
LWPs are related to the underlying OS. Their events can
be monitored through the ptrace system call [9]. Also
this function offers memories and registers access primitives.
However, user threads only exist within their library. The
kernel is not aware that user threads are handled on a LWP
and cannot have information about them as soon as they are
unscheduled.

Example 1 shows the list of threads natively known
by the debugger for an application with five user threads
mapped onto two LWPs (a), and the same execution with
the additional knowledge provided by our USER LEVEL DB
(ULDB) module (b). One can see that the threads 1, 2 and
5, blocked in the user-level thread scheduler, are natively
unknown. Only the user threads currently scheduled on a
LWP are visible.

Example 1 Hybrid thread debugging
(gdb) info threads
Thread 2 (LWP 2) in bar ()
Thread 1 (LWP 1) in foo ()

(a) Natively

(gdb) info threads
Thread 5 (LWP 2) in mpc_setjmp ()
Thread 4 (LWP 2) in bar ()
Thread 3 (LWP 1) in foo ()
Thread 2 (LWP 1) in mpc_setjmp ()
Thread 1 (LWP 1) in mpc_setjmp ()

(b) With the ULDB module

In this paper, we describe our ULDB library, an imple-
mentation of the THREAD DB API. ULDB is designed to
be used by any thread library to deal with the debugger
without requiring a huge development effort. In Section II
we introduce the different models of thread libraries. Then
in Section III we describe the THREAD DB architecture. in
Section IV we discuss our ULDB library and in Section
V its API. In Section VI, we highlight some examples of



utilization of our library. We conclude this paper with the
further perspectives of work.

II. RELATED WORK

The thread libraries lie between the user application and
the operating system. They offer parallelism and synchro-
nization primitives to design multithreaded programs. Three
classes of libraries can be distinguished (see Figure 1):

Kernel-level libraries: Thread creations, scheduling
and synchronizations are managed by the system kernel.
Such threads are named virtual processors or LWPs on UNIX
systems. They efficiently exploit parallel architectures, but
each thread operation is costly because of the system calls.
(Futexes [10] provide an alternative by staying in userland
for the acquisition/release of free mutexes.) As one user
thread is mapped to one kernel thread, these libraries are
said to be “1:1” (Figure 1.a).

User-level libraries: These only use user-space func-
tions to handle threads. The stacks of the threads are built
with context switches or through an alternative signal stack
(e.g., makecontext or sigalt stack, respectively;
see [11] for further details) and the execution flows from
one thread to another via swapcontexts or longjmps.
The latency of these operations is short, and most of them are
widely portable. However, a blocking system-call will freeze
all the threads (the kernel in unaware that the program is
multithreaded). These libraries are “N:1” (Figure 1.b shows
a “3:1” mapping).

Hybrid-level libraries: They gather the principles of
both previous models: multiprocessors are exploited with the
creation of several kernel threads (i.e., LWPs), whereas op-
erations done frequently are handled in user space. Stalls due
to system calls can be avoided by creating a kernel thread
which will run the remaining threads on the behalf of the
blocked one. Obviously, these advantages come at the price
of a high complexity in the library implementation. These
libraries are “N:M” (Figure 1.c shows a “6:2” mapping).

III. THREAD DB ARCHITECTURE

The THREAD DB interface describes many aspects of
thread debugging. The current version of this library ad-
dresses the questions of thread distinction and backtrace
display (features supported by GDB). These features are
enabled by the thread library related part of THREAD DB:

Iteration: The thread list must be traversed according
to the request criteria and a callback function applied on
each thread (td_ta_thr_iter);

Mapping: The debugger needs to know which thread
is running on a given LWP (td_thr_map_lwp2thr);

Event Notification: Some events of the thread life
(e.g., birth, death) must be notified to the debug-
ger, through the execution of breakpointed instructions
(td_{ta|thr}_event_*);

Information: Details about a thread current character-
istics like state, LWP, . . . (td_thr_get_info);

Register accessors: The general registers of a thread
must be read, either on its LWP if the thread is active, or
somewhere else, at the discretion of the implementation, if
the thread is asleep. These registers are used to build the
thread backtrace (td_thr _{get|set}regs).

As the debugger and the thread library (the debuggee) are
two distinct processes, they do not share an address space.
This implies that they cannot communicate directly. Thus,
the implementation of the THREAD DB API is divided into
two modules: the first one, doing the actual implementation
of the interface, lives in the debugger address-space,
whereas the second lives with the debuggee. The exchanges
between the two sides are only one way, debugger to
debuggee, and are done through the PROC-SERVICE
interface of the debugger (MEMCPY-like functions). Figure
2 draws a diagram of this architecture.

Figure 2. The THREAD DB architecture

In this architecture, each thread library needs to provide a
library which implements THREAD DB (LIBTHREAD DB).
This implementation is strictly bound to its thread library.
For instance, the location and structure of the thread list is
nowhere standardized.

IV. USER LEVEL DB LIBRARY

We propose ULDB library that offers an implementation
of the THREAD DB API, which lightens thread-library
programmers from the implementation of the generic
algorithms of the API (See Figure 3). ULDB API is small
and focused (only 20 functions). It defines only few rules
to respect. This debug library provides the thread library
with standardized debug features. ULDB is easily portable
over different operating systems: one optional system call
— to read the current LWP and architectures: the register
set has to be ported.

A special care has been taken to manage user- and hybrid-
thread libraries. Their non-bijective mappings (respectively
N:1 and N:M) lead the debugger to misunderstand the



Figure 3. The ULDB architecture

actual user-thread configuration. In fact, only LWPs, created
by the system kernel, can be followed in a generic way.
Debuggers are natively able to distinguish one kernel thread
from another, build their backtrace, manage their signals,
etc. Our library provides debuggers with the ability to do
these operations at the user-thread scope.

The process side of the library has to be linked up with
the program to debug, or at least with the thread library. The
thread manager provides ULDB with application-specific
details during the initialization, and then with thread-specific
data, at each thread creation. In both cases, only a few
information are required: the register offset and a lock object
for the initialization, and the address of the context buffer for

each thread. Further optional information can be provided to
precise the thread characteristics: its type (created by user or
owned by the thread manager), the boundaries of its stack,
its start function, . . .

A. Thread states and event notification

In addition to these static information, ULDB must be
provided with up-to-date details about the thread life. The
most important ones are its state and the LWP it is executed
on. The former is used to determine whether the registers of
a thread need to be read on memory (if it is asleep),
or directly on its LWP. These values are essential for a
correct behavior and the closer update before/after the switch
of state, the better. Wrong informations about the thread’s
state lead to incorrect reads into memory. For example, to
backtrace one blocked thread B, the debugger may read
registers from thread A actually executing on the LWP if
the state of the thread B is not asleep whereas the data
required are located into memory.
Thread birth and death must also be notified to the debugger.
According to the THREAD DB specifications, much more
events shall be reported, but debuggers (i.e., GDB, DBX)
only manage these two ones. The report of events is done
with the help of special functions, breakpointed by the
debugger. The handling of these functions is done internally.
Notification of events are conditioned by two bit-masks, the
first one is valid for the whole application, an the second one
is specific to a thread. Each event is activated or disabled at
the willing of the debugger. The management of these bit-
masks and the reporting of events is also done internally,
the thread manager only has to inform ULDB that birth or
death occurred.

Figure 1. Levels of scheduling



B. Performance matters

As one of the purposes of user-level thread libraries is
to build high performance programs, we paid attention to
lower as much as possible our footprint on the execution.
Therefore, we defined two sets of functions:

• one for a fast integration of the module, where the
thread identifier is defined by the library, usually the
Thread ID (TID). No modification of the thread library
structures is required. Internally, we browse a linked
list to retrieve our handles. We may improve this search
thanks to a hash table;

• the second set offers a better scalability: the handle is
directly managed by the thread library, which may store
it in its thread data. As most of our functions are short
and inlined, the overhead is very limited. This solution
is the best way to use our library.

V. USER LEVEL DB API

The ULDB API is used by the thread library to deal with
the debugger (see Figure 3). It describes how to initialize
ULDB and the thread-related parameters. It is divided
into a static set and a dynamic one. A DEBUG mode is
also available to help the thread library’s developer to set
up correctly ULDB with the notification of incoherent or
unordered use of the functions.

A. Library initialization

The thread manager provides here informations valid for
the whole run. The offsets of the registers inside the context
buffer must first be detailed. The context of a thread will be
read directly into memory by the debugger when the thread
is not be active (asleep state). Here are some example
of LINUX/x86 offsets for jmb_buf and mcontext_t
contexts:

Register eip esp ebp ebx edi
mcontext t 14 7 6 8 4
jmp buf 5 4 3 0 2

Then, the thread manager must provide an initialized lock
object (e.g., mutex, spinlock) and the corresponding
lock, release and free functions. This lock will be
used to ensure that the critical region of the ULDB library
(i.e., the thread list management) is serialized. The lock will
be freed, if necessary, at the end of the debugging session
(triggered by the debugger side of the module). If the thread
library runs at user level and is not preemptive (e.g., the
GNUPTH), no lock is required. This part of the API in
presented in Source 1.

B. Thread attributes

They describe the characteristics of a thread. Some of
them are static, like the context address, the type or the
boundaries of the stack; whereas others must be kept up-
to-date. For example, the LWP to which a thread is bound

Source 1 Initialization of the ULDB module
/* Enable or disable the ULDB library */
tdb_err_e uldb_enable_lib_thread_db (void)
tdb_err_e uldb_disable_lib_thread_db (void)

/* Provide the offsets of x86 registers */
tdb_err_e

uldb_set_eip_offset (size_t offset)
tdb_err_e

uldb_set_esp_offset (size_t offset)
tdb_err_e

uldb_set_ebp_offset (size_t offset)
tdb_err_e

uldb_set_ebx_offset (size_t offset)
tdb_err_e

uldb_set_edi_offset (size_t offset)

/* Provide a lock object and its accessors */
tdb_err_e

uldb_set_lock (void *lock,
int (*acquire) (void *),
int (*release) (void *),
int (*lock_free) (void *))

may vary over the time if the library allows work stealing or
thread migrations. As well, the thread state (e.g., active,
asleep, runnable) is frequently changed by the sched-
uler. The states TD_THR_ACTIVE and !TD_THR_ACTIVE
must be emphasized, for they are used to settle where the
context is read: on the LWP for the former (the thread
is actually executed on the LWP), in the memory of the
latter (the thread is blocked or wait for execution). Some
attributes like the start function, the type of thread or the
stack boundaries are not mandatory for the library; they
only provide further details to be displayed by the debugger.
Source 2 presents this second part of the API.

C. Performance facilities

The functions suffixed by *_tid exempt the user from
the ULDB thread-handles management, and only ask for a
TID. The function uldb_get_thread is used internally
to map from this TID to the handle. The structure used to
store the thread handles is actually a linked list. Therefore,
it may become expensive to traverse the list often when
numerous threads are used. Libraries looking for high per-
formance shall avoid the utilization of the *_tid functions
and manage internally the mapping TID to the handle.

D. System and architecture

The system architecture is important to be known to deal
with thread contexts. As well, a system-dependent call is
used to determine the LWP a thread is running on (in
uldb_get _lid). These information must be provided to
ULDB via preprocessor macros.



Source 2 Initialization and update of the thread attributes
/* add or remove a thread to the internal list */
uldb_add_thread (const void *tid, tdb_thread_debug_t **thread)
uldb_remove_thread (tdb_thread_debug_t *thread)

/* report the events monitored by the debugger*/
uldb_report_creation_event (tdb_thread_debug_t *thread)
uldb_report_death_event (tdb_thread_debug_t *thread)

/* Provide the address of the context of a sleeping thread */
uldb_set_thread_context (tdb_thread_debug_t *thread, void *context)
/* Provide further details about a thread (optional) */
uldb_set_thread_startfunc (tdb_thread_debug_t *thread, char *tls)
uldb_set_thread_stkbase (tdb_thread_debug_t *thread, void *stkbase)
uldb_set_thread_stksize (tdb_thread_debug_t *thread, int stksize)
uldb_set_thread_type (tdb_thread_debug_t *thread, td_thr_type_e type)

/* Provide the current LWPid / state (active or not) of a thread */
uldb_update_thread_lid (tdb_thread_debug_t *thread, lwpid_t lid)
uldb_update_thread_state (tdb_thread_debug_t *thread, td_thr_state_e state)

VI. EXPERIMENTATIONS

Several experimentations have been carried out to validate
the design of the library and its API. In this section we
describe how we managed to use our library with debuggers
like GDB and DBX, with some modifications of the source
code of the former. Then we tackle the work required to al-
low threads from user and hybrid-thread libraries (GNUPTH,
MPC and MARCEL) to be debugged.

A. Cooperation with GDB and DBX

GDB is a widely used debugger, part of the GNU project.
However, its LINUX versions are explicitly designed to
work with the kernel-level thread library GLIBC/NPTL [5]
of the THREAD DB interface. That is, it is not possible in
the current GDB (6.8) to choose at runtime the path of the
libthread_db to use; and only kernel threads can be
handled.

To cope with these difficulties, we prefixed the shared
library loading by the check of an environment variable
(GDB_LIBTHREAD_DB), which shall point to the
THREAD DB implementation. The issue of kernel-thread
debugging is not so obvious. As we mentioned before, when
the scheduler lies in the kernel space, a “1:1” mapping is
assumed. Thus GDB considers that the registers of all the
threads can be directly read on their LWP. This assumption
is clearly false in user and hybrid libraries. To solve
this problem, we analyzed the SOLARIS implementation
of the GDB thread module. The thread library used on
SOLARIS systems was hybrid a few years ago and GDB
was able to debug it. We extracted the functions dealing
with register handling (to_fetch_registers and
to_store_registers) and adapted them to the LINUX

version.

The LINUX version of DBX (7.7) suffers from a bug
which limits debugging of our hybrid libraries. For user-
level libraries, ULDB could be used transparently. The only
exception is that the state TD_THR_SLEEP crashes the
debugger and should not be used. The environment variable
(_DBX_LIBTHREAD_DB_OVERRIDE) sets the path of the
libthread_db to load.

B. Integration into GnuPth

The GNUPTH thread library [12] runs at user level,
without preemption. The integration of ULDB has been
carried out in less than a day, without further help than the
on-line documentation. The resulting patch has around 100
lines and modifies five files.

The interface accesses are gathered in the pth_debug
module of the library. One function enables the library,
by providing the offset of the registers — the System
V/setcontext context controller are used — and no lock
are required — thanks to the non-preemptive user sched-
uler. Then a function adds each thread in the module and
specify its context location, start function, type and lid; and
another remove them at their death. The only further calls
to our module deal with state switching (TD_THR_ACTIVE
vs. TD_THR_SLEEP) when a thread is scheduled or fells
asleep.

C. Integration into MPC

MPC [13], [14] is an environment aimed at providing
programmers with efficient runtime system for their existing
MPI, POSIX Thread or MPI+Thread applications. It features
an hybrid-level thread scheduler, optimized to deal with
tasks communications and synchronizations.



The modifications are globally the same as in GNUPTH,
except that MPC uses two context controllers, according
to the underlying system. This specificity is easy to take
into account with ULDB: only the register offsets and the
address of the context must be changed, as described in
Source 3.

Source 3 Choice of the context controller
#if SCTK_MCTX_MTH(mcsc)
/* swapcontext/makecontext */

uldb_set_thread_context \
(thread, ttid->ctx.uc.uc_mcontext.gregs) ;

#else
/* setjmp/longjmp */

uldb_set_thread_context \
(thread, ttid->ctx.jb);

#endif

MPC also allows to create system threads used internally.
These threads (i.e., idle tasks, timing tasks, . . . ),
created by MPC for its own use, do not follow the classic
thread-creation path. The flag TD_THD_SYSTEM is trig-
gered to distinguish them from final-user threads, as quoted
in Example 2.

The effort to use ULDB with MPC is limited and requires
only a 600 patch.

Example 2 User and System threads
(gdb) info tdb-threads
#1) system thread #0x20d76a, lwp 25937,

(run) startfunc: idle_task
[...]
#3) user thread #0x386020, lwp 25937,

(active) startfunc: erato

D. Integration into MARCEL

MARCEL [15] is the thread library of the Parallel
Multithreaded Machine project. It offers high-performance
hybrid-thread facilities.

The integration has been performed in a few weeks, in
remote collaboration with contributors of MARCEL. The
resulting patch has around 500 lines.

Like for the two other libraries, no important
changes have been required for this integration.
Most of the thread creations are done in the
marcel_sched_internal_create_[dont]start
functions. Only the kernel threads (created with the clone
system call) go through a different path. All the context
switchs are executed in marcel_switch _to, including
the preemption event. The only drawback is that the
debugger slows down the process execution, what impedes
the preemption. Preemption time-slice must be reduced to
get back the original behavior.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced the USER LEVEL DB library
(ULDB), a generic implementation of the THREAD DB
interface. ULDB aims at providing the thread library with
a high-level interface, by abstracting away all the generic
features. We successfully demonstrated the ability of our
library to allow debugging of several user (GNUPTH) and
hybrid (MARCEL, MPC) thread libraries. A very low level
of expertise was required in each case, and the modifications
were minor and lightweight for the thread libraries.
It is also important to highlight that ULDB does not
break the ability of graphical debuggers like DDD, Insight,
Eclipse-Debug or DDT to use command-line debuggers
(GDB, DBX) as back-end. Hybrid and user threads are
handled transparently, with the added features of the
front-ends.

Currently, ULDB implements all the thread semantic
features supported by GDB. The support of thread synchro-
nization debugging needs to be investigated and included
in the ULDB API and in the debugger as far as GDB is
concerned.

ULDB is distributed as a part of the MPC project
available at http://mpc.sourceforge.net.
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