
stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

STMicroelectronics
LIG
University of Grenoble

Supporting Parallel Component Debugging

in Embedded Systems

Using GDB Python Interfaces.

Kevin Pouget, Miguel Santana, Vania Marangozova-Martin
and Jean-François Mehaut

GNU Tools Cauldron 2012, July 9th -11th

Slide 1/29

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Context

Embedded System Development

• High-resolution multimedia app. ⇒ high performance expectations.
• H.265 HEVC
• augmented reality,
• . . .

• Sharp time-to-market constraints

⇒ Important demand for
• powerful parallel architectures

• MultiProcessor on Chip (MPSoC)

• convenient programming methodologies

• Component-Based Software Engineering

• e�cient veri�cation and validation tools

• Our problematic

Slide 2/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Context

MultiProcessor on Chip (MPSoC)

• Parallel architecture
• more di�cult to program

• Maybe heterogeneous
• hardware accelerators,
• GPU-like accelerators (OS-less)

• Embedded system
• constrained environment,
• on-board debugging complicated
→ performance debugging only

• limited-scale functional debugging on simulators

Slide 3/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Context

Component-Based Software Engineering

• Focus on design of independent building blocks

• Applications built with interconnected components

• Allows the adaptation of the application architecture according to
runtime constraints

• Runnable components able to exploit MPSoC parallelism

Slide 4/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Agenda

1 Component Debugging Challenges

2 Component-Aware Interactive Debugging

3 Feature Details

4 Python Implementation

5 Conclusion

Slide 5/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Agenda

1 Component Debugging Challenges

2 Component-Aware Interactive Debugging

3 Feature Details

4 Python Implementation

5 Conclusion

Slide 6/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component Debugging Challenges

Component-based applications are dynamic

• various set of components deployed during the execution

• components are dynamically inter-connected

Slide 7/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component Debugging Challenges

Component-based applications are dynamic

• various set of components deployed during the execution

• components are dynamically inter-connected

Slide 7/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component Debugging Challenges

Component-based applications are dynamic

• various set of components deployed during the execution

• components are dynamically inter-connected

Slide 7/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component Debugging Challenges

Components interact with one another

• their execution is driven by interface communications

• complex framework-dependent steps between an interface call and
its execution

Slide 8/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component Debugging Challenges

Components interact with one another

• their execution is driven by interface communications

• complex framework-dependent steps between an interface call and
its execution

Slide 8/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component Debugging Challenges

Components interact with one another

• their execution is driven by interface communications

• complex framework-dependent steps between an interface call and
its execution

Slide 8/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component Debugging Challenges

Components interact with one another

• their execution is driven by interface communications

• complex framework-dependent steps between an interface call and
its execution

Slide 8/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component Debugging Challenges

Components interact with one another

• their execution is driven by interface communications

• complex framework-dependent steps between an interface call and
its execution

Slide 8/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component Debugging Challenges

Components interact with one another

• their execution is driven by interface communications

• complex framework-dependent steps between an interface call and
its execution

Slide 8/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component Debugging Challenges

Components interact with one another

• their execution is driven by interface communications

• complex framework-dependent steps between an interface call and
its execution

Slide 8/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component Debugging Challenges

Components interact with one another

• their execution is driven by interface communications

• complex framework-dependent steps between an interface call and
its execution

Slide 8/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component Debugging Challenges

Information �ows over the components

• a corrupted data may be carried over various component before
triggering a visible error

Slide 9/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component Debugging Challenges

Information �ows over the components

• a corrupted data may be carried over various component before
triggering a visible error

Slide 9/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component Debugging Challenges

Information �ows over the components

• a corrupted data may be carried over various component before
triggering a visible error

Slide 9/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component Debugging Challenges

Information �ows over the components

• a corrupted data may be carried over various component before
triggering a visible error

Slide 9/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component Debugging Challenges

Information �ows over the components

• a corrupted data may be carried over various component before
triggering a visible error

Slide 9/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component Debugging Challenges

Information �ows over the components

• a corrupted data may be carried over various component before
triggering a visible error

Slide 9/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Agenda

1 Component Debugging Challenges

2 Component-Aware Interactive Debugging

3 Feature Details

4 Python Implementation

5 Conclusion

Slide 10/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component-Aware Interactive Debugging

Objective: Bring the debugger closer to the component model

• Show application architecture evolutions
• component deployment
• interface binding
• . . .

• Follow the execution �ow(s) over the component graph
• runnable component execution,
• execution triggered by an interface call
• . . .

• Track inter-component data exchanges
• message route history,
• message- or interface-based breakpoints
• . . .

Slide 11/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component-Aware Interactive Debugging

Objective: Bring the debugger closer to the component model

• Show application architecture evolutions
• component deployment
• interface binding
• . . .

• Follow the execution �ow(s) over the component graph
• runnable component execution,
• execution triggered by an interface call
• . . .

• Track inter-component data exchanges
• message route history,
• message- or interface-based breakpoints
• . . .

Slide 11/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component-Aware Interactive Debugging

Objective: Bring the debugger closer to the component model

• Show application architecture evolutions
• component deployment
• interface binding
• . . .

• Follow the execution �ow(s) over the component graph
• runnable component execution,
• execution triggered by an interface call
• . . .

• Track inter-component data exchanges
• message route history,
• message- or interface-based breakpoints
• . . .

Slide 11/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component-Aware Interactive Debugging

Objective: Bring the debugger closer to the component model

• Show application architecture evolutions
• component deployment
• interface binding
• . . .

• Follow the execution �ow(s) over the component graph
• runnable component execution,
• execution triggered by an interface call
• . . .

• Track inter-component data exchanges
• message route history,
• message- or interface-based breakpoints
• . . .

Slide 11/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component-Aware Interactive Debugging
Implementation

⇒ Detect and interpret key events in the component framework

Slide 12/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component-Aware Interactive Debugging
Implementation

⇒ Detect and interpret key events in the component framework

Slide 12/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component-Aware Interactive Debugging
Implementation

⇒ Detect and interpret key events in the component framework

Slide 12/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component-Aware Interactive Debugging
Implementation

⇒ Detect and interpret key events in the component framework

Slide 12/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component-Aware Interactive Debugging
Implementation

⇒ Detect and interpret key events in the component framework

Slide 12/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component-Aware Interactive Debugging
Implementation

⇒ Detect and interpret key events in the component framework

Slide 12/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component-Aware Interactive Debugging
Implementation

⇒ Detect and interpret key events in the component framework

Slide 12/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component-Aware Interactive Debugging
Implementation

⇒ Detect and interpret key events in the component framework

Slide 12/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component-Aware Interactive Debugging
Implementation

⇒ Detect and interpret key events in the component framework

Slide 12/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component-Aware Interactive Debugging
Implementation

⇒ Detect and interpret key events in the component framework

Slide 12/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component-Aware Interactive Debugging
Implementation

⇒ Detect and interpret key events in the component framework

Slide 12/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component-Aware Interactive Debugging
Implementation

⇒ Detect and interpret key events in the component framework

Slide 12/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component-Aware Interactive Debugging
Implementation

⇒ Detect and interpret key events in the component framework

Slide 12/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component-Aware Interactive Debugging
Implementation

⇒ Detect and interpret key events in the component framework

Slide 12/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component-Aware Interactive Debugging
Implementation

⇒ Detect and interpret key events in the component framework

Slide 12/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Component-Aware Interactive Debugging
Implementation

⇒ Detect and interpret key events in the component framework

Slide 12/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Agenda

1 Component Debugging Challenges

2 Component-Aware Interactive Debugging

3 Feature Details

4 Python Implementation

5 Conclusion

Slide 13/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Feature Details
Proof-of-concept environment

Platform 2012

ST MPSoC research platform

• Heterogeneous

• 4x16 CPU OS-less comp. fabric

Slide 14/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Feature Details
Proof-of-concept environment

Native Programming Model

• P2012 component framework

• Provides communication
components and interface

Platform 2012

ST MPSoC research platform

• Heterogeneous

• 4x16 CPU OS-less comp. fabric

Slide 14/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Feature Details
Proof-of-concept environment

The Gnu Debugger

• Adapted to low level debugging

• Large user community

Native Programming Model

• P2012 component framework

• Provides communication
components and interface

Platform 2012

ST MPSoC research platform

• Heterogeneous

• 4x16 CPU OS-less comp. fabric

Slide 14/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Feature Details
Proof-of-concept environment

The Gnu Debugger

• Adapted to low level debugging

• Large user community

Native Programming Model

• P2012 component framework

• Provides communication
components and interface

Platform 2012

ST MPSoC research platform

• Heterogeneous

• 4x16 CPU OS-less comp. fabric

Slide 14/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Feature Details
Case study: Debugging a Pyramidal Feature Tracker

• part of an augmented reality
application

• analyzes video frames to track
interesting features motion

Slide 15/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Case study: Debugging a Pyramidal Feature Tracker
List components and their interfaces

(gdb) info component +connections

#1 Host[31272]

DMAPush/0x... <DMA> srcPullBuffer Component... #2

DMAPull/0x... <DMA> dstPushBuffer Component... #2

* #2 Component[SmoothAndSampleProcessor.so]

srcPullBuffer <DMA> DMAPush/0x... Host[31272]

dstPullBuffer <DMA> DMAPull/0x... Host[31272]

Slide 16/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Case study: Debugging a Pyramidal Feature Tracker
Information about messages

• messages can be logically aggregated with user-de�ned routing tables:

Message 1:

Component A # Message created

Slide 17/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Case study: Debugging a Pyramidal Feature Tracker
Information about messages

• messages can be logically aggregated with user-de�ned routing tables:

Message 1:

Component A # Message created

Component A::Interface A.1 # Message sent

Slide 17/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Case study: Debugging a Pyramidal Feature Tracker
Information about messages

• messages can be logically aggregated with user-de�ned routing tables:

Message 1:

Component A # Message created

Component A::Interface A.1 # Message sent

Slide 17/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Case study: Debugging a Pyramidal Feature Tracker
Information about messages

• messages can be logically aggregated with user-de�ned routing tables:

Message 1:

Component A # Message created

Component A::Interface A.1 # Message sent

Component B::Interface B.1 # Message received

Slide 17/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Case study: Debugging a Pyramidal Feature Tracker
Information about messages

• messages can be logically aggregated with user-de�ned routing tables:

Message 1:

Component A # Message created

Component A::Interface A.1 # Message sent

Component B::Interface B.1 # Message received

Message 2:

Component B # Message created

Slide 17/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Case study: Debugging a Pyramidal Feature Tracker
Information about messages

• messages can be logically aggregated with user-de�ned routing tables:

Message 1:

Component A # Message created

Component A::Interface A.1 # Message sent

Component B::Interface B.1 # Message received

Message 2:

Component B # Message created

Component B::Interface B.2 # Message sent

Slide 17/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Case study: Debugging a Pyramidal Feature Tracker
Information about messages

• messages can be logically aggregated with user-de�ned routing tables:

Message 1:

Component A # Message created

Component A::Interface A.1 # Message sent

Component B::Interface B.1 # Message received

Message 2:

Component B # Message created

Component B::Interface B.2 # Message sent

Component C::Interface C.1 # Message received

Slide 17/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Case study: Debugging a Pyramidal Feature Tracker
Information about messages

• messages can be logically aggregated with user-de�ned routing tables:

Message 1:

Component A # Message created

Component A::Interface A.1 # Message sent

Component B::Interface B.1 # Message received

Message 2:

Component B # Message created

Component B::Interface B.2 # Message sent

Component C::Interface C.1 # Message received

Slide 17/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Case study: Debugging a Pyramidal Feature Tracker
Information about messages

• messages can be logically aggregated with user-de�ned routing tables:

Message 1:

Component A # Message created

Component A::Interface A.1 # Message sent

Component B::Interface B.1 # Message received

Message 2:

Component B # Message created

Component B::Interface B.2 # Message sent

Component C::Interface C.1 # Message received

Slide 17/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Case study: Debugging a Pyramidal Feature Tracker
Information about messages

• messages can be logically aggregated with user-de�ned routing tables:

Message 1:

Component A # Message created

Component A::Interface A.1 # Message sent

Component B::Interface B.1 # Message received

Component B::Interface B.2 # Message sent

Component C::Interface C.1 # Message received

Slide 17/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Case study: Debugging a Pyramidal Feature Tracker
Information about interface activity

(gdb) info components +counts

#2 CommComponent[SmoothAndSampleProcessor.so]

srcPullBuffer #35 msgs

dstTmpPushBuffer #36 msgs

srcTmpPullBuffer #35 msgs

dstPushBuffer #34 msgs

• allowed us to �nd a bug in the application
(msg sent to the wrong interface)

Slide 18/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Case study: Debugging a Pyramidal Feature Tracker
Information about interface activity

(gdb) info components +counts

#2 CommComponent[SmoothAndSampleProcessor.so]

srcPullBuffer #35 msgs

dstTmpPushBuffer #36 msgs

srcTmpPullBuffer #35 msgs

dstPushBuffer #34 msgs

• allowed us to �nd a bug in the application
(msg sent to the wrong interface)

Slide 18/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Case study: Debugging a Pyramidal Feature Tracker
Information about interface activity

Excerpt from a 300 lines-of-code �le

/* Compute last lines if necessary */

if (tmp_size > 0) {

...

/* Transmit the last lines computed */

CALL(srcTmpPullBuffer, release)(...);

CALL(dstTmpPushBuffer, push)(...);

}

Slide 19/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Agenda

1 Component Debugging Challenges

2 Component-Aware Interactive Debugging

3 Feature Details

4 Python Implementation

5 Conclusion

Slide 20/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Python Implementation

Detect and Interpret Key Events in the Component Framework

Detect • Internal breakpoints
• no apparent execution stop
• no screen noti�cation

→ Python noti�cation for framework events

Key Events • New components, new binding
• Component execution trigger
• Message created, sent, received, . . .

Interpret • Debug information (DWARF)
• API + Calling conventions
→ (almost) everything we need

Slide 21/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Python Implementation

Detect and Interpret Key Events in the Component Framework

Detect • Internal breakpoints
• no apparent execution stop
• no screen noti�cation

→ Python noti�cation for framework events

Key Events • New components, new binding
• Component execution trigger
• Message created, sent, received, . . .

Interpret • Debug information (DWARF)
• API + Calling conventions
→ (almost) everything we need

Slide 21/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Python Implementation

Detect and Interpret Key Events in the Component Framework

Detect • Internal breakpoints
• no apparent execution stop
• no screen noti�cation

→ Python noti�cation for framework events

Key Events • New components, new binding
• Component execution trigger
• Message created, sent, received, . . .

Interpret • Debug information (DWARF)
• API + Calling conventions
→ (almost) everything we need

Slide 21/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Python Implementation

Detect and Interpret Key Events in the Component Framework

Detect • Internal breakpoints
• no apparent execution stop
• no screen noti�cation

→ Python noti�cation for framework events

Key Events • New components, new binding
• Component execution trigger
• Message created, sent, received, . . .

Interpret • Debug information (DWARF)
• API + Calling conventions
→ (almost1) everything we need

1some implementation-dependent bits still remain ...

Slide 21/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Python Implementation
Debug Toolbox

Function breakpoints

Internal breakpoints triggered at the execution of a function
⇒ catch input, updated and output parameters
• stop, do_after, data = prepare_before(self)
• stop = prepare_after(self, data)

• gdb.execute(�finish�)

�Thou shalt not alter the execution state of the inferior�
(gdbdoc 23,2,2,20)

→ gdb.FinishBreakpoint instead

NPM_instantiateComponent(&cmp1_handle, type1, nb_procs);

NPM_instantiateComponent(&cmp2_handle, type2, nb_procs);

NPM_instantiateFIFOBuffer(&fifo_handle,

cmp1_handle, "src_itf",

cmp2_handle, "dst_itf");

...

Slide 22/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Python Implementation
Debug Toolbox

Function breakpoints

Internal breakpoints triggered at the execution of a function
⇒ catch input, updated and output parameters
• stop, do_after, data = prepare_before(self)
• stop = prepare_after(self, data)

• gdb.execute(�finish�)

�Thou shalt not alter the execution state of the inferior�
(gdbdoc 23,2,2,20)

→ gdb.FinishBreakpoint instead

NPM_instantiateComponent(&cmp1_handle, type1, nb_procs);

NPM_instantiateComponent(&cmp2_handle, type2, nb_procs);

NPM_instantiateFIFOBuffer(&fifo_handle,

cmp1_handle, "src_itf",

cmp2_handle, "dst_itf");

...

Slide 22/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Python Implementation
Debug Toolbox

Function breakpoints

Internal breakpoints triggered at the execution of a function
⇒ catch input, updated and output parameters
• stop, do_after, data = prepare_before(self)
• stop = prepare_after(self, data)

• gdb.execute(�finish�)

�Thou shalt not alter the execution state of the inferior�
(gdbdoc 23,2,2,20)

→ gdb.FinishBreakpoint instead

NPM_instantiateComponent(&cmp1_handle, type1, nb_procs);

NPM_instantiateComponent(&cmp2_handle, type2, nb_procs);

NPM_instantiateFIFOBuffer(&fifo_handle,

cmp1_handle, "src_itf",

cmp2_handle, "dst_itf");

...
Slide 22/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Python Implementation
Debug Toolbox

User-level Multithreading

• threading implemented with longjmp/setjmp

→ invisible to GDB

REGISTERS = ("$esp", "$ebp", "$eip") # $

def save_current_thread():

return [gdb.parse_and_eval(reg) for reg in REGISTERS]

def switch_inactive_thread(next_):

jmbuf = next_["context"][0]["__jmpbuf"]

gdb.execute("set $esp=%s" % jmbuf[JB_SP])

gdb.execute("set $ebp=%s" % jmbuf[JB_BP])

gdb.execute("set $eip=__longjmp")

gdb.execute("flushregs")

def reload_current_thread(stop_regs):

for reg_name, reg_val in map(REGISTERS, stop_regs):

gdb.execute("set %s=%s" % (reg_name, str(reg_val))

Slide 23/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

REGISTERS = ("$esp", "$ebp", "$eip") # $

def save_current_thread():

return [gdb.parse_and_eval(reg) for reg in REGISTERS]

def switch_inactive_thread(next_):

jmbuf = next_["context"][0]["__jmpbuf"]

gdb.execute("set $esp=%s" % jmbuf[JB_SP])

gdb.execute("set $ebp=%s" % jmbuf[JB_BP])

gdb.execute("set $eip=__longjmp")

gdb.execute("flushregs")

def reload_current_thread(stop_regs):

for reg_name, reg_val in map(REGISTERS, stop_regs):

gdb.execute("set %s=%s" % (reg_name, str(reg_val))

Slide 23/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

REGISTERS = ("$esp", "$ebp", "$eip") # $

def save_current_thread():

return [gdb.parse_and_eval(reg) for reg in REGISTERS]

def switch_inactive_thread(next_):

jmbuf = next_["context"][0]["__jmpbuf"]

gdb.execute("set $esp=%s" % jmbuf[JB_SP])

gdb.execute("set $ebp=%s" % jmbuf[JB_BP])

gdb.execute("set $eip=__longjmp")

gdb.execute("flushregs")

def reload_current_thread(stop_regs):

for reg_name, reg_val in map(REGISTERS, stop_regs):

gdb.execute("set %s=%s" % (reg_name, str(reg_val))

Slide 23/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

REGISTERS = ("$esp", "$ebp", "$eip") # $

def save_current_thread():

return [gdb.parse_and_eval(reg) for reg in REGISTERS]

def switch_inactive_thread(next_):

jmbuf = next_["context"][0]["__jmpbuf"]

gdb.execute("set $esp=%s" % jmbuf[JB_SP])

gdb.execute("set $ebp=%s" % jmbuf[JB_BP])

gdb.execute("set $eip=__longjmp")

gdb.execute("flushregs")

def reload_current_thread(stop_regs):

for reg_name, reg_val in map(REGISTERS, stop_regs):

gdb.execute("set %s=%s" % (reg_name, str(reg_val))

Slide 23/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Python Implementation
Debug Toolbox

User-level Multithreading

(gdb) info processors

#1 Processor DMA 1 // user-level threads

#2 Processor 1 Cluster 1 // <=> simulated processors

* #3 Processor 2 Cluster 1

#4 Processor 1 Cluster 2

...

(gdb) info components

#1 Host // component not scheduled

* #2 Component A1 // current component

#3 Component A2

~ #4 Component B1 // component not schedulable

~ #5 Component B2 // <=> no execution context

Slide 24/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Python Implementation
Debug Toolbox

User-level Multithreading

(gdb) component 3

[Switching to sleeping Component A2 #3]

(gdb) where

#0 0x47bb07a0 in __longjmp () from /usr/lib/libc.so.6

#1 0xf7fe3f20 in contextSwitch (old, new)

#2 0xf7fe406d in schedule_next_execution_context ()

#3 0xe7eb7838 in schedNext ()

...

#9 0xdd55e23d in outputBuffer_fetchNextBuffer (...)

#10 0xdd5d26c8 in rtmMaster (...)

#11 0xdd5d307d in thread_main (...)

...

Slide 25/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Python Implementation
Debug Toolbox

User-level Multithreading

• far from being perfect
• no coordination with GDB thread capabilities

• user-level thread debugging is possible with Python

• a Thread_db library (e.g., User-Level Thread_db2) could make it
more standard and reliable

2
ULDB: a debugging API for user-level thread libraries, K. Pouget et al, MTAAP 10

Slide 26/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Python Implementation
Entity Tracking

On framework function breakpoint:

1 identify operation and parameters
• which function?
gdb.Breakpoint.location

• API for parameters
• cmp_py = lookup_table[handle]

2 identify active component
• based on current thread/processor

3 update internal state accordingly, e.g.,
• create a component/link object
• move a message btw components
• . . .

4 check user breakpoints/catchpoint

Slide 27/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Python Implementation
Entity Tracking

On framework function breakpoint:

1 identify operation and parameters
• which function?
gdb.Breakpoint.location

• API for parameters
• cmp_py = lookup_table[handle]

2 identify active component
• based on current thread/processor

3 update internal state accordingly, e.g.,
• create a component/link object
• move a message btw components
• . . .

4 check user breakpoints/catchpoint

Slide 27/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Python Implementation
Entity Tracking

On framework function breakpoint:

1 identify operation and parameters
• which function?
gdb.Breakpoint.location

• API for parameters
• cmp_py = lookup_table[handle]

2 identify active component
• based on current thread/processor

3 update internal state accordingly, e.g.,
• create a component/link object
• move a message btw components
• . . .

4 check user breakpoints/catchpoint

Slide 27/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Python Implementation
Entity Tracking

On framework function breakpoint:

1 identify operation and parameters
• which function?
gdb.Breakpoint.location

• API for parameters
• cmp_py = lookup_table[handle]

2 identify active component
• based on current thread/processor

3 update internal state accordingly, e.g.,
• create a component/link object
• move a message btw components
• . . .

4 check user breakpoints/catchpoint

Slide 27/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Agenda

1 Component Debugging Challenges

2 Component-Aware Interactive Debugging

3 Feature Details

4 Python Implementation

5 Conclusion

Slide 28/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Conclusion

• Debugging dynamic component application is challenging

• Lack of high level information about components framework

• Our work: bring debuggers closer to the component model
• better understanding application behavior
• keep focused on bug tracking

• Proof-of-concept: GDB and its Python interface
• interface good enough to build real improvements in Python
• a few missing bits contributed to the project

• gdb.FinishBreakpoint
• multiple breakpoint hits
• gdb.selected_inferior()

• Going further programming-model aware debugging
• OpenCL
• Data�ow execution model
• . . .

Slide 29/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Conclusion

• Debugging dynamic component application is challenging

• Lack of high level information about components framework

• Our work: bring debuggers closer to the component model
• better understanding application behavior
• keep focused on bug tracking

• Proof-of-concept: GDB and its Python interface
• interface good enough to build real improvements in Python
• a few missing bits contributed to the project

• gdb.FinishBreakpoint
• multiple breakpoint hits
• gdb.selected_inferior()

• Going further programming-model aware debugging
• OpenCL
• Data�ow execution model
• . . .

Slide 29/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

stm icroelectron i c s , un i ver s i ty of grenoble/l ig laboratory

Conclusion

• Debugging dynamic component application is challenging

• Lack of high level information about components framework

• Our work: bring debuggers closer to the component model
• better understanding application behavior
• keep focused on bug tracking

• Proof-of-concept: GDB and its Python interface
• interface good enough to build real improvements in Python
• a few missing bits contributed to the project

• gdb.FinishBreakpoint
• multiple breakpoint hits
• gdb.selected_inferior()

• Going further programming-model aware debugging
• OpenCL
• Data�ow execution model
• . . .

Slide 29/29 � kevin.pouget@st.com � Supporting Parallel Component Debugging. � GNU Tools Cauldron 2012, July 9th -11th

	Component Debugging Challenges
	Component-Aware Interactive Debugging
	Feature Details
	Python Implementation
	Conclusion

