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ABSTRACT
With the advent of parallel architectures in the domain of
embedded systems, developing applications fully adapted to
their underlying platform becomes more and more compli-
cated. Finding and fixing bugs in such environments is even
trickier. Furthermore, current complex applications cannot
be developed from scratch, only based on programming lan-
guage primitives. They have to follow advanced program-
ming models and their execution will be driven by the APIs
of the key underlying libraries.
In this paper, we propose a new approach for source-level
debuggers. Going beyond their long-established ability to
support sequential programming languages, we describe the
functionalities a debugger should be able to provide to de-
bug embedded and parallel component-based applications.
Then we demonstrate our solution to this problem with a de-
bugger targeting the component framework used on an MP-
SoC platform. We also explain the development challenges
we faced during the implementation of this GDB-based de-
bugger and illustrate its efficiency though a case study of an
image processing application.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Code inspections and walk-throughs; D.4.7 [Operating Sys-
tems]: Organization and Design—Real-time systems and
embedded systems; D.3.2 [Programming Languages]:
Language Classifications—Componentware

General Terms
Debugging, Component, Embedded, MPSoC
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1. INTRODUCTION
In order to answer the ever increasing demand for com-

putational power, Multi-Processor-on-Chip (MPSoC) archi-
tectures have been introduced during the last decade in the
domain of embedded systems. With high-quality image and
video processing or voice encoding and decoding, embedded
applications must be fully adapted to their underlying plat-
forms to meet performance expectations. However, develop-
ers also have to face time-to-market requirements, meaning
that application design, development and refinement phases
must be as efficient as possible.

Component-oriented software engineering [7] is a program-
ming model which puts an important focus on the design of
independent building blocks and on reusability. This allows
applications to be constructed dynamically by binding to-
gether such components. In order to exploit MPSoC paral-
lel architectures, components can also be defined as runnable
and bound to an execution context such as a thread or a pro-
cess. As the underlying framework is in charge of component
mapping, scheduling and communications, it will be able to
optimize the deployment of components according to the dif-
ferent aspects of the underlying MPSoC architecture (e.g.,
shared or distributed memory, processor characteristics) and
runtime requirements.

However, when it comes to the debugging phase, it ap-
pears that common tools like interactive debuggers only
provide programming language-level features. Apart from
threads and processes, none of the higher-level concepts used
by developers to build applications are materialized in the
debuggers. We believe that the next generation of debuggers
should take into account the programming model as well as
the runtime environment of applications. Indeed, they have
a key role in the overall execution, and they reflect the pro-
gramming guidelines followed during the development.

The main contribution of this article is a novel approach
for the design of interactive debuggers, which describes the
key functionalities that should be provided to allow an effi-
cient debugging of dynamic component-based applications.
We also detail how this approach has been implemented with
an industrial component framework for an MPSoC system,
on top of GDB, a popular free debugger.

This article is structured as follows: Section 2 introduces
the problems encountered during component application de-
bugging. Then, we detail in Section 3 our proposal for an
efficient component-aware debugger. In Section 4, we dis-
cuss the existing parallel debuggers, as well as the current
solutions for debugging components and objects-oriented ap-



plications. In Section 5 we describe our proof-of-concept de-
bugger in the context of an embedded component framework
developed by STMicroelectronics. We present how it is
implemented as a GDB extension in Section 6. We evaluate
its efficiency in Section 7 with the debugging of an image
processing application case study. Finally, Section 8 sum-
marizes the contributions of this paper and details the future
work.

2. MOTIVATIONS
Interactive debugging is a complex activity where develop-

ers try to figure out where the actual code behaviour diverges
from expectations. To do that, they must have a total and
precise control over the application execution. During devel-
opment phase, the component framework provides the rele-
vant primitives required to implement a component-oriented
application: interface and architecture definition languages,
encapsulation mechanisms, deployment and binding prim-
itives and so on. However, the debugging of component-
based application is currently quite complicated, because of
these additional abstractions. Traditional interactive debug-
gers are not aware of the component-related information, so
they can only provide source-level features. In this section,
we describe the main issues currently encountered by devel-
opers while debugging component-based applications.

Dynamic Architecture Components are standalone com-
putation entities interconnected through their inter-
faces. They have the ability to be dynamically instan-
tiated and bound to other components. Hence, the ap-
plication architecture will change over time, according
to the execution requirements. Traditional debuggers
are not able to present most of these dynamic aspects.
The similarities between threads and components may
allow debuggers to list the live components, however
no information about the interconnection network will
be available.

Component Interactions During their lifespan, compo-
nents offer services to the rest of the system through
their provided interfaces. They may need services from
other component to perform their task, which are de-
scribed by the required interfaces. The execution of
the components will be driven by the events received
on each of these interfaces. The notion of interconnec-
tion does not exist in existing debuggers, so develop-
ers have to manually figure out the current component
bindings and play subtly with breakpoints in order to
follow a payload through an interface call.

Information Flow A component-based application can be
composed of a large number of components, which will
successively apply a given transformation to an infor-
mation. In this case, developers will have to figure
out the path followed by the suspicious pieces of infor-
mation to understand the application state. However,
existing debuggers only provide details about the cur-
rent processor and memory state.

Current state-of-the-art debuggers do not account for such
runtime information about the programming model. In or-
der to simplify the debugging activity, an interactive debug-
ger should be able to catch and work with the key events of

the component framework, and provide the developer with
the high-level abstractions used to develop the application.

In the next section, we present the debugging approach
we designed to help developers to locate more easily the
problems of component-based applications. For each of the
main steps of the debugging process, we highlight the fea-
tures which can be used to overcome the issues presented in
this section.

3. COMPONENT-AWARE DEBUGGING
Our contribution consists of a set of functionalities that

a debugger should implement, in order to allow efficient
component-based application debugging. Our approach re-
lies on the detection and handling of the key events executed
by the component framework. These events should be in-
terpreted to follow the evolution of the component-related
aspects of the application. They allow the debugger to pro-
vide accurate information and control mechanisms to debug
component-based applications.

Stop the Application Before the Error The debugger
should leverage the additional events introduced by
the component framework to provided more adapted
flow control mechanisms. Namely, developers should
be able to stop the execution upon specific variations in
the application architecture, like components instanti-
ation or destruction, or specific interface bindings.

Execute the Application Step-by-Step In addition to
the previous mechanisms, the interactions between the
components should be exploited to improve step-by-
step execution. It should be possible to control the
application according to the activity of a component
interface and step into an interface call the same way
one steps into a function call (it may involve several
framework-dependant calls and/or another execution
context). Developers should also be able to use the
information flow to follow a given payload across the
various components. For instance, setting a breakpoint
on a message should stop the execution each time this
message is transmitted to a new component.

Inspect the Application State Component architecture
is an important aspect of the application state. So, the
developer should be provided with an overview of the
components currently deployed, including the interface
bindings. The application information flow should also
provided further details to the developer. First, mes-
sage counters on component interfaces should facilitate
the detection of unexpected usages. Second, knowing
the route followed by messages should help developers
to understand how the application reached its current
state.

Two-Level Debugging Finally, as the instructions of com-
ponent applications are eventually written in a given
programming language and executed by the proces-
sor like traditional codes, language-based and low-level
debugging commands should still be available. In-
deed, although some bugs may lay in the program-
ming model-related aspects of the application, there
is a chance that the problems are hidden deep down
in the language instructions. So, memory and proces-
sor inspection, breakpoints and watchpoints (maybe



component-specific) and other step-by-step execution
control primitives should be directly available.

Section 5 and 6 present a proof-of-concept debugger im-
plementing this approach, and Section 7 details a study case
analysis of its efficiency. The following section discusses re-
lated work focusing on the debugging of complex applica-
tions and programming models.

4. RELATED WORK
Our approach lays at the confluence of different research

areas. The first part of this section explores how parallel
debugging is currently done in the context of High Perfor-
mance Computing (HPC), which involves large numbers of
system threads and processes interacting with one another.
Shared-memory and data-parallel paradigms are out of the
scope of this work, so the focus is put on the debugging of
message-passing based application. Then object and com-
ponent debugging is explored, with an analysis of how these
programming models are currently handled in debuggers.

4.1 High Performance Computing Debugging
There exist different solutions to debug parallel applica-

tions. However, few of them investigate the question of pro-
gramming models. The first part of this section considers
two debuggers which try to reduce the quantity of infor-
mation brought to the developer. Then, the second part
introduces some approaches which try to take into account
the application runtime environment in the debugger.

Large-scale applications, where thousands of tasks are ex-
ecuted simultaneously, involve tremendous quantities of in-
formation. A debugger must be able to filter out part of
this data, first of all in order to perform efficiently, but also
not to flood the developer with unusable information. In [2],
Balle et al. define a debugger architecture based on a tree-
like network of aggregators, with fully functional debuggers
at each leaf. The aggregators provide an output-reducing
mechanism, which should scale down the quantity of output
data generated by the application. They identified three
different types of output (identical, identical except a small
variation and widely different), which allow the aggregators
to merge them accordingly. Hence, the aggregator network
limits the quantity of information reaching the top-level de-
bugger and ensures an acceptable response time.
In a similar way, parallel debuggers like DDT [1] try to sim-
plify the debugging activity by joining together duplicated
information. For instance, processes can be grouped accord-
ing to the function they are currently executing or in a tree
merging the stacks of each process. Then, only a specific
group will be debugged, allowing the developer to under-
stand the divergences within a group more easily and thus
the cause of the problem.
These two solutions are orthogonal to our problem, in the
sense that we did not focus on the situation where a large
number of identical tasks are involved. Indeed, we believe
that interactive debugging should essentially target func-
tional bugs, and other tools should be used to understand
performance issues. So in most situations, it should be pos-
sible to narrow the problem down to a limited number of
tasks. It is clear that our approach could not scale to de-
bug several thousands of components: the debugger needs
to keep information about each entity and track their in-
teractions, so the parallel speedup of the application will

certainly be completely lost. This will consequently lead to
an unacceptable execution time. However, in order to im-
prove the debugging of limited-scale applications, DDT-like
mechanisms could be extended to support some of the new
abstractions we have defined. For instance, groups could
be formed according to the component definition, link or
interface.

These research areas focus on the best way to present well-
known information to the developer like the program stacks,
memory contents, application and debugger outputs. But
they do not look for new information. Let us now consider
the few attempts which try to allow the debugger to provide
new kinds of information.

The literature provides only a few examples which try to
integrate the notion of message passing in the debugger. In
[4], Cownie et al. present how they implemented MPI1 mes-
sage queue interpretation in TotalView. They introduce
the idea of representing conceptual information about the
message-passing model in the debugger. However they did
not really go further than listing (in a standard way, with re-
gard to the debugger and the MPI library implementation)
the content of the internal message queues.
In [11], Schaeli et al. describe an interesting solution which
provides a visual representation of the messages exchanged
by MPI processes and allows the developer to explicitly con-
trol the ordering of the message-passing events. The authors
explain that their main goal is to automatically or manually
detect race conditions. Consequently, their approach does
not focus on the other aspects of debugging, and their tool
does not allow interactive debugging commands like step-by-
step execution or memory inspection. The implementation
they propose is based on the profiling API of MPI, which al-
lows an external library to execute code upon specific events
triggering. For instance, the process may wait for a debug-
ger order before sending a message. Although this approach
does not target the same class of problems as our work,
their solution could be leveraged to adapt our work to MPI
libraries.

4.2 Object and Component Oriented Applica-
tion Debugging

The debugging challenges of component-based application
shares some similarities with object-oriented applications:
entities are dynamically created, they communicate with one
another, and their inter-connections change over time. The
authors of [10] present an object-centric debugger, which
aims at shifting the debugger focus from the execution stack
towards the objects themselves. We share part of their mo-
tivations, however they consider different abstraction levels
and constraints. Their solution is based on the ability to dy-
namically modify the behavior of individual objects, for in-
stance to hook object instantiations, method calls, etc. and
inject a debugger notification. So it requires a programming
language evolved enough to offer this capability, typically an
interpreted language, or predefined hook points. Our work
is more oriented towards low level languages, like the C lan-
guage, which is frequently used in embedded systems. They
also target programming language-level debugging, as they
work with programming language concepts, whereas our ef-
fort is focused on the programming model. This means that
they do not address the problem of bringing the debugger

1Message Passing Interface [9]



closer to the programming model abstractions used in the
applications, and the developer will be left with overwhelm-
ing information about low level details. Nevertheless, their
approach could be used in conjunction with ours, once the
programming model related part of the debugging activity
has narrowed down the problem search-space.

General component-based application debugging presents
an additional difficulty, which is out of scope of this work, as
it is not relevant to embedded systems. Component frame-
works usually have the ability to bring together components
written in different languages and/or black-boxes provided
by third parties. In this scenario, traditional debuggers are
of little help, as most of them do not support multi-language
debugging, or debugging is simply not possible in the case
of black-boxes. The authors of [14] propose a solution to
this problem: they squeeze debugging components in be-
tween the application components. These components are
able to monitor the component interface activities without
any knowledge about the implementation and/or without
exhibiting the multi-language debugging problem. The ar-
ticle describes some of the features which can be achieved
with this concept, which include:

• Record and replay of the interactions, which allows a
standalone re-execution of a component.

• Data and flow control analyses at component level.

• Setting breakpoints on the interfaces for interactive
debugging.

This approach is non-negligibly intrusive as it requires the
developer to build and manually connect the interface mon-
itors (although they mention that future versions should be
able to do it automatically). Also, as the debugging mecha-
nisms are directly integrated in the application and certainly
have a significant cost (especially in their context of scien-
tific computing), the debug and production versions of the
application will inevitably be different, and this discrepancy
may hide some of the bugs.

5. DEBUGGING FEATURES FOR AN EM-
BEDDED COMPONENT FRAMEWORK

In this section, we describe our proof-of-concept debugger
and the features it provides, which implement the approach
described in Section 3. We focus on the embedded system
Platform 2012 (P2012) [12] and its component framework
Native Programming Model (NPM).

P2012 is a low consumption, parallel and embedded plat-
form research project developed by STMicroelectronics
and CEA. It targets high-definition audio and video process-
ing. The platform is shaped as an accelerator architecture,
using a multicore general-purpose ARM processor on the
host2 side and clusters of STxP70 configurable processors
on the fabric side. As depicted in Figure 1, the processing
elements of a cluster share the L1 memory. Inter-cluster
communication is done through the L2 memory, whereas
host-fabric exchanges are performed by DMA3 controllers
with the L3 memory.

2We use the term host to refer to the general-purpose pro-
cessor of the platform, which is different from its remote
debugging/development meaning.
3Direct Memory Access

Figure 1: P2012 architecture

NPM is a component-based programming environment
developed to exploit P2012 architecture. It offers a highly
optimized framework providing guidelines for the implemen-
tation of application components, pattern-based communi-
cation components and a deployment API for the host side.
In order to exploit the processors of the platform efficiently,
NPM implements the concept of runnable components. Such
components have to implement a specific interface, which
will be triggered by the framework in a dedicated processor.
The components will then be able to execute parallel code
on the available processors of their cluster, based on the
fork/join model [8]. We will only focus on the component
aspect of NPM.

Although the component programming model is not widely
used yet, it is well suited for embedded systems [5]. Indeed,
components allow the adaption of the application architec-
ture to the runtime constraints such as the workload, the
power consumption or the available processors. The major
reason of their low popularity seems to be the strong require-
ments that embedded systems must satisfy, like timeliness,
quality-of-service or predictability, which are not achieved
by traditional component frameworks.

In the following sections, we describe NPM’s API along
with the associated debug features provided by our debug-
ger.

5.1 Host-side Deployment and Management
The deployment of runnable NPM components is done in

two stages, from the host side of the application. The com-
ponent is first instantiated on a given cluster (CM_instan-
tiate). At this stage, the component can be configured
and its interfaces must be bound to other component in-
terfaces. Then, its run method can be triggered once or
several times (NPM_runRTMComponent). Finally, component
instances must be destroyed to release the memory (CM_des-
troy).

int CM_instantiate (name, target_cluster, *comp);

void NPM_runRTMComponent (instance);

int CM_destroy (instance);

Our debugger is able to catch the events corresponding to
these functions and allows the developer to stop the execu-
tion at these points. Components are named according to
the file in which they were compiled, and the instances are
identified by a unique number. They can be in one of three
states:



selected One of the execution contexts has been stopped
in this component, and the debugger commands will
be related to this component.

not selected One of the execution contexts has been stop-
ped in this component and the debugger can switched
to this component.

no execution context The component is not currently run-
ning.

The indication about the target cluster (target_cluster)
is also interpreted. The host application is represented as a
component to unify the handling of the different entities.

NPM allows components to be bound at runtime from the
host with predefined communication mechanisms. A DMA
controller transfers data from the host to the fabric (i.e., to
the components); whereas a FIFO4-buffer based link trans-
fers data between two components, either using shared mem-
ory inside a cluster or inter-cluster communication mecha-
nisms:

int NPM_instantiateDMAPullBuffer (bufferId,

consumerComp, consumerInputItf, ...)

...

int NPM_instantiateFIFOBuffer (bufferId,

producerComp, producerOutputItf,

consumerComp, consumerInputItf, ...)

In this scenario, the debugger recognizes the binding be-
ing established and provides it to the developer. A DMA

pull binding connects the interface consumerInputItf of
the component consumerComp to the pseudo-interface buffer
Id of the host component. It is also possible to catch further
details about the DMA configuration such as the buffer size
and location or the access pattern. The same idea applies
to DMA push and FIFO bindings. The target cluster infor-
mation discovered at component instantiation gives a hint
about the algorithm (shared or distributed memory) selected
by the framework to implement the FIFO bindings.

Thanks to this information, developers have an accurate
overview of the current deployment state of the applica-
tion. As NPM components may have an execution context,
the debugger memorizes the mappings between the inter-
nal threads and the application components. This gives the
ability to developers to see the call stack of all the run-
ning component. Switching from one component to another
can either be done directly (with their unique identifier) or
through the name of the interfaces.

5.2 Communication Interfaces
As mentioned above, the components of NPM applica-

tions communicate through Pull and Push predefined inter-
faces. The Pull interface allows the reception a full data
buffer, whereas the Push interface provides empty buffers
and sending mechanisms.

interface npm.buffer.PullBuffer {

/* Informs the communication component that is

should start to fetch the buffer that will

be returned by the subsequent call to the

pull method. */

void fetchNextBuffer();

4First In First Out

/* Returns a buffer from which data can be

read. This method may be blocking until a

buffer is available. */

void *pull ();

/* Releases a previously pulled buffer. */

void release(void *buffer);

...

}

interface npm.buffer.PushBuffer {

/* Returns a buffer into which data can be

produced. */

void *getBuffer();

/* Push a previously returned buffer. */

void push (void *buffer);

/* Wait for the termination of every ongoing

transfers of previously pushed or sent

buffers. */

void waitTransfers();

...

}

On the debugger side, we consider the Push and Pull in-
terfaces as communication endpoints and model DMA con-
trollers and FIFO-buffer links as inter-component links. In
both interfaces, we elected the methods responsible for mes-
sages departure and arrival, namely PushBuffer push and
PullBuffer pull.

These primitives give the debugger the ability to detect
communication events, hence allowing the developer to con-
trol the execution based on the messages sent and received
by the components. Component interface specific break-
points can be set, and a finer-grain control can be achieved
with condition checking. A message counter is also incre-
mented every time a message is transmitted by the interface.

5.3 Message-Based Flow Control
NPM communication components exhibit clear and well-

defined message-handling patterns. This allows our debug-
ger to detect that, when the PushBuffer push interface meth-
od is triggered, a piece of information is leaving the sender
component, and when the corresponding PullBuffer pull

returns, the target component is able to process this very
information. The message entities modeled in our debugger
are purely conceptual, and therefore are not bound to any
data structure of the application or the component frame-
work.
In some cases like pipeline-shaped application architectures,
developers may be able to identify such routing patterns in
the components. This enables the message-based flow con-
trol capabilities of our approach. The idea of routing table is
borrowed from networking, where routers, like components,
transmit messages according to their incoming interface and
information contained in the payload. Here, developers will
define the tables principally based on the component and in-
terface names, but also according to the current application
architecture and memory state, as schematized in Figure 2.

Message-based flow control allows developers to set break-
points on messages, instead of memory locations. To enable
this feature, messages have a unique identifier and can be
listed, either all at once or per component or link. Given



Figure 2: Routing table for message flow debugging.

a message identifier, one can set a permanent or tempo-
rary breakpoint which will stop the execution the next time
the message is handled. Coupled with a stamping mecha-
nism, either generic or defined by the developer, our debug-
ger can give further information about the message history.
The generic stamp will contain the component name and
unique identifier, as well as the interface name and direction
(message sent or received). The stamp list will inform the
developer about the route followed by a message over the
components.

The concept of message history can be illustrated as fol-
lows: considering a streaming application which applies a
set of filters to frame data. Each filter is implemented in a
dedicated component (Component A, B and C), similarly to
Figure 2.

If the debugger does not have routing information about
the application components, new messages will be generated
each time a communication occurs:

Message 1:

Component A # Message created

Component A::Interface A.1 # Message sent

Component B::Interface B.1 # Message received

Message 2:

Component B # Message created

Component B::Interface B.2 # Message sent

Component C::Interface C.1 # Message received

which means that Component A first sent a message to Comp-

onent B. Then, Component B sent a message to Component

C.
Now, if the developer could provide a simple routing table

expressing that Component B transmits the incoming mes-
sages towards Component C, then the history information
would be simplified:

Message 1:

Component A # Message created

Component A::Interface A.1 # Message sent

Component B::Interface B.1 # Message received

Component B::Interface B.2 # Message sent

Component C::Interface C.1 # Message received

which clearly indicates the route followed by the message.
Now that the features provided by our debugger have been

detailed, the following section introduces its inner implemen-
tation specificities and how GDB was extended to achieve
this.

6. EXTENDING GDB TO SUPPORT COM-
PONENT DEBUGGING

GDB is the debugger of the Gnu project [13]. It has a very
large user community in both general and embedded com-
puting. We decided to base our work on this tool because
of its advanced process inspection and control capabilities
and to simplify user handovers. Moreover, recent versions
of GDB export Python bindings, which allow extensions
to be developed easily and efficiently. Thus, all the classic
functionalities of GDB are available in our debugger. Fig-
ure 3 presents a schematic representation of a traditional
debugger like GDB connected to an MPSoC platform, as
well as our component-awareness extension.

In order to limit the intrusiveness of the debugging in the
execution, we decided not to alter the component frame-
work. Therefore, the debugger needs to update its inter-
nal representations whenever the component architecture is
modified.
Our runtime-information capture mechanism relies on inter-
nal function breakpoints set at the entry and exit of the
programming model-related functions exported by the com-
ponent framework. Based on the API definition, calling
conventions and debug information, we parse the relevant
function arguments to extract the information required to
update the internal representations.

In the current NPM implementation, the framework API
and implementation are rich enough to capture all the in-
formation required to implement our support. However, in
some other component frameworks, further compile-time in-
formation might be required, such as the interface and ar-
chitecture specifications used by the component builder.

Function breakpoints extend the traditional breakpoint
mechanism by attaching to the breakpoint the semantic def-
inition of the operation it monitors. Each time the break-
point is triggered, a specific action is executed to update
the internal representations. Based on NPM API and source
code, we elected the locations responsible for key component
operations and implemented the corresponding representa-
tion modification back to the debugger’s function break-
points. The concept of finish breakpoint was also introduced
in GDB Python API to programatically catch the return
point of a function. This allows the interception of output
and updated parameters.

In order to allow the debugger to manage the concepts

Figure 3: Two-level debugging of an MPSoC plat-
form.



of NPM component-based programming, we defined three
kinds of entities:

• The application components.

• The endpoints, corresponding to component interfaces.

• The links, corresponding to the bindings between the
interfaces. In NPM, bindings are implemented with
FIFO or DMA patterns.

The top part of Figure 3 presents how these entities are
internally used to represent a component-based application.

In the current version of the debugger, no static infor-
mation about the component model is used in addition to
the standard Dwarf [6] debug information. This allows the
debugger to connect the application more easily. However,
we could exploit compiler-generated information about the
component structures and application architecture to enrich
our model and optimize general performance.

Indeed, our frequent use of breakpoints introduces a slow-
down in the application. This is mainly due to communi-
cation-related function breakpoints which may be triggered
very frequently in communication-intensive applications. In
order to cope with this problem, one can disable this set
of breakpoints until the “critical part” of the execution is
reached. This can be done for instance with the life-cycle
events or through classic component breakpoints (respec-
tively watchpoints) . Component-specific breakpoints, sim-
ilarly to thread breakpoints, ensure that the component
which stops the execution is actually the component associ-
ated with the breakpoint.

7. CASE STUDY: DEBUGGING A PYRAMI-
DAL FEATURE TRACKER

This section presents a case study which illustrates the
efficiency of our approach. We use an application executing
the Pyramidal implementation of the Kanade-Lucas feature
Tracker (PKLT) based on NPM components and running on
the x86/Posix simulator of P2012.

Feature tracking consists in identifying interesting points
(features) in an initial image and following their motion in
the subsequent images (tracking). Figure 4 presents a visual
representation of several features tracked from one image to
another. Bouguet explains the algorithm in [3], which is
divided into two parts. First, the images are subsampled,
with different ratios, to create a pyramidal representation.
The bottom of the pyramid is the largest image, the top is
the smallest. Then, the feature tracker is applied iteratively
to the different levels of the pyramid.

The remainder of this section starts with an overview of
the application implementation. Then, it details how our de-
bugger presents the information of the current architecture
to the developer. Finally, it explains how we leveraged our
debugger to detect a communication bug in the application
implementation.

7.1 Application Implementation
The scenario that we considered in this case study consists

of a PKLT feature tracking between two images with, for the
sake of simplicity, a two-level pyramid. The application is
implemented with two types of components plus the host-
side task:

Figure 5: PKLT component architecture

SmoothAndSample is in charge of creating a new pyra-
mid level. It receives the n− 1th level image as input
and returns the nth level image.

IterOpticalFlowCalc performs a feature tracking between
two images. It expects previous and next images in in-
put, as well as the previous level features. It returns
the new feature tracks.

Host side is in charge of the coordination of the compo-
nents and programs the DMA controller to transfer
the images to and between the components.

Both components execute their core algorithm on up to
sixteen share-memory processing elements of a P2012 clus-
ter. Figure 5 presents a schematic representation of this
architecture.

7.2 Debugger Representation of the Architec-
ture

In order to see the live deployment state of the applica-
tion, developers need to stop the execution at an interesting
location. For instance when the first component execution
is triggered, that is, with the run event. The excerpt be-
low5 also contains the framework initialization, (i.e., when
the host component is instantiated), as well as the instan-
tiation of the SmoothAndSample component.

(gdb) component catch run

Catching components ‘run’ events

(gdb) run

...

[New component instantiated #1 Host[31272]]

...

[New component instantiated #2 Component[Smooth..]]

...

[Stopped on ‘run’ method of #2 Component[Smooth..]]

Then developers can list the currently known components,
along with their interfaces (info components +itf). There
are two components in the excerpt below, the host and a
SmoothAndSample component. Developers can also list the
inter-bindings, per component (info connections) or per
link (info links). They will learn that the components are
connected through two interfaces (the DMA links).

(gdb) info components +itf

#1 Host[31272]

Name. Id.

5We assume that the reader is familiar with GDB command-
line syntax. Otherwise, please refer to [13].



Figure 4: Feature tracking between two images

DMAPush/0x8050f7c

DMAPush/0x8050fbc

...

* #2 Component[SmoothAndSampleProcessor.so]

Name. Type.

srcPullBuffer (PullBuffer)

dstPushBuffer (PushBuffer)

...

(gdb) info connections

Interface. Link. Remote Itf. Remote Comp.

#1 Host[31272]

DMAPush/0x... DMALink srcPullBuffer Component... #2

DMAPull/0x... DMALink dstPushBuffer Component... #2

...

#2 Component[SmoothAndSampleProcessor.so]

srcPullBuffer DMALink DMAPush/0x... Host[31272]

dstPullBuffer DMALink DMAPull/0x... Host[31272]

...

(gdb) info links

Link Interface Component

#1 DMALink

DMAPush/0x8050f7c Host[31272]

srcPullBuffer (PullBuffer) Component... #2

#2 DMALink

DMAPull/0x8050fbc Host[31272]

dstPushBuffer (PushBuffer) Component... #2

...

The following section describes how we used our debugger
to discover the location of a bug in this application.

7.3 Data Transfer Error
During the validation process of the application, the test

suite reported that the features reaching or leaving the bot-
tom of the images coming from some cameras were not cor-
rectly tracked.

In order to understand how this bug was localized, we
need to detail the algorithm of the SmoothAndSample com-
ponent. This component is in charge of creating a new level
of the image pyramid. It receives the input image line by line
from its srcPullBuffer interface, applies a first “horizontal”
parallel filter and sends it temporarily to the host through
the dstTmpPushBuffer interface6, because of memory con-
straints. Then the temporary image is retrieved again from

6The temporary interfaces we removed from the excerpts in
the previous part for readability reasons.

the srcTmpPullBuffer interface, and a column by column
“vertical” parallel filter is applied. The columns of the out-
put image are pushed to the dstPushBuffer interface right
after they have been processed.

The srcPullBuffer and dstTmpPushBuffer interfaces in
the first part of the algorithm, and the srcTmpPullBuffer

and dstPushBuffer interfaces in the second part are respec-
tively supposed to be invoked in a lock-step fashion. All
the data incoming in the source interface are processed and
sent to the destination interface.

In order to verify this assumption, we set a breakpoint
on component destroy events and executed the application
until the first component destruction:

(gdb) component catch destroy

Catching components ‘destroy’ events

(gdb) run

...

[Stopped on ‘destroy’ event of #2 Component...]

Then, we asked the debugger to list the message counters
of the component interfaces, and noticed that the figures did
not follow the expectations. Each interface was supposed
to process 35 messages. The dstTmpPushBuffer interface
received one unexpected message, whereas dstPushBuffer

was lacking one.

(gdb) info components +counts

~ #2 CommComponent[SmoothAndSampleProcessor.so]

srcPullBuffer #35 msgs

dstTmpPushBuffer #36 msgs

srcTmpPullBuffer #35 msgs

dstPushBuffer #34 msgs

Once this condition was noticed, it was straightforward
to locate and fix the default in the code: the image size is
divided evenly between the processors and, when the size
cannot be entirely divided, the remainder part is processed
in sequence. In our scenario, the bug was located in this
remainder handling: the last message was sent to the tem-
porary interface (dstTmpPushBuffer) instead of the final one
(dstPushBuffer).
This bug would have been tricky to detect without our de-
bugger. First, the developers would have had to investigate
both of the components, as there was no obvious way to
guess the faulty component. Then, only a precise code read-
ing, maybe with the step-by-step capabilities of a traditional
debugger, would have highlighted the issue.

In order to further validate the usefulness of our approach,
it would be interesting to provide application developers



with our debugger at the beginning of the development pro-
cess. Indeed, when we started PKLT study, it already passed
the main validation tests. Key problems in the component
architecture usually arise in the early steps of the devel-
opment, and it would be interesting to know how our tool
would help developers to solve such issues, in comparison
with classic debuggers.

8. CONCLUSION AND FUTURE WORK
In this article we introduced our new approach to debug-

ging component-based applications interactively. We no-
ticed two drawbacks in the available tools. First, current de-
buggers do not account for the concepts introduced by pro-
gramming models (except at system level), such as the com-
ponents and their interactions. Second, traditional language-
level static debuggers are of little help when debugging com-
plex and dynamic component-based applications developed
for MPSoC systems.

We presented the main issues faced by developers when
they try to debug such applications, which are related to the
dynamic architecture, the components interactions and the
complex flow of the information over the components. We
described our contribution to solve these problems, an ap-
proach where debuggers are able to provide developers with
high-level abstractions related to the component program-
ming model. Based on the detection and interpretation of
key events in the execution of the component framework,
our approach allows the debugger to dynamically discover
component instantiations, bindings, deployments and inter-
actions. It also allows the computation of a live representa-
tion of the component interconnections. Thus, the approach
offers to developers a better overview of the current state of
dynamic applications. It also allows setting breakpoints on
specific components, on their interfaces or on their life-cycle
events. We went one step further by describing how debug-
gers should represent the messages carried throughout the
components. This information helps developers to better
understand the route followed by the application message.
It also allows the control of the execution flow based on the
activities of these messages.

Then we described how we applied this approach to an in-
dustrial parallel component framework of the MPSoC sys-
tem Platform 2012, developed by STMicroelectronics
and CEA. We presented the different parts of the framework
API, along with the associated debug capabilities. We also
detailed how we developed a proof-of-concept debugger as
an extension of GDB, the free debugger of the Gnu project.
GDB is frequently used to debug applications running on
embedded systems. Based on its Python API, we intro-
duced the concept of function breakpoints as extensions of
the traditional breakpoints. These breakpoints are tailored
to the framework function they monitor and update the de-
bugger internal representations each time their function is
executed.

Finally, we presented a case study that illustrates the de-
bugging of an image processing application. We detailed
the scenario of a faulty execution, which would have been
complicated to understand with traditional tools, and high-
lighted how our approach facilitated the identification of the
problem and allowed us to figure out where the defect was
located in the code.

Interactive debugging of complex applications based on
their programming model appears to be a promising direc-

tion. In future work, we will investigate how the idea of
dynamically reconstructing the programming model based
on framework events can be applied to different models. We
expect our debugger to be able to easily encompass them,
thanks to a generic code base. Using GDB as the low-end
debugger should also help other developers to adapt our tool
to their environment.
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