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Abstract—Debugging parallel and concurrent applications is
well-recognized as a time-consuming task, which often requires
a significant part of the application development process. In the
context of embedded systems, Multi-Processor-System-on-Chip
(MPSOC) architectures feature numerous multicore processors
which may be coupled with heterogeneous processors like Digital
Signal Processors (DSPs) and/or application-specific accelerators.
In this situation, it is important that developers are provided with
high-level programming environments able to efficiently exploit
these architectures, as well as suitable debugging tools.

Dataflow programming models were explicitly designed to
program parallel architectures and they have the ability to
abstract away heterogeneous computing complexity. In addition,
the stream-processing aspect of multimedia algorithms naturally
exhibits data-dependency graphs, which simplifies application
design and implementation.

In this paper, we propose a new approach for interactive
debugging of dataflow applications. Going beyond the long-
established ability of interactive debuggers to support sequential
programming languages, we describe the functionalities they
should be able to provide to debug embedded and parallel
dataflow applications. Then we demonstrate our solution to
this problem with a proof-of-concept debugger targeting the
dataflow framework used on an industrial MPSOC platform.
We also explain the development challenges we faced during the
implementation of this GDB-based debugger and illustrate its
efficiency through a case study of a video decoder debugging
session.

Index Terms—dataflow; debug; embedded; parallel; mpsoc;

I. INTRODUCTION

In the context of embedded computing, Multi-Processor-

System-on-Chip (MPSOC) architectures have been introduced

during the last decade to answer the ever increasing demand

for computational power. MPSOCs typically offer heteroge-

neous parallelism, with numerous general-purpose multicore

processors, but also Digital Signal Processors (DSPs) and

application-specific accelerators. Today’s multimedia embed-

ded applications need to support high-quality image, video or

voice processing. So, they have to be fully adapted to their

underlying platform if they want to meet performance expec-

tations. However, traditional models for parallel programming

like multithreading are not able to efficiently exploit such a

heterogeneous parallelism.

Multimedia applications are good candidates for a dataflow

based implementation. Indeed, stream-processing algorithms

naturally exhibit data-dependency graphs, which simplifies

application design and implementation. Recent publications

like [1], [2] show successful demonstrations of the efficiency

of dataflow languages to implement video decoders. Also,

in 2008, the Moving Picture Experts Group (MPEG) used

a dataflow language (CAL, [3]) to describe their new video

standard, MPEG-RVC [4].

Moreover, the heterogeneous parallelism of MPSOCs can

be exploited by dataflow programming models. Indeed, these

models hide the underlying processor specificities and dis-

charge the mapping, scheduling and tuning to the runtime

system [5], [6]. Hence, dataflow programming on MPSOC

systems appears as an interesting trade-off.

The dataflow programming models have been developed

since the 1970s/1980s as an alternative to the conventional

paradigms based on “von Neumann” processors [7]. In these

models, the focus is shifted from the stream of instructions

being executed (i.e. moving the program counter) towards the

dependencies between the data. Put briefly, this means that an

instruction, or a block of instructions, is not executed when

the program counter reaches it, as in imperative programming,

but rather when its operands are ready. The models were

explicitly designed to exploit parallel architectures and try to

avoid the main bottlenecks of von Neumann hardware: the

global program counter and the global updatable memory.

As dataflow models put an important focus on data depen-

dencies, applications designed with such models can be repre-

sented as directed graphs. The nodes of the graph correspond

to the different data transformations of the application. The

inbound arcs represent their input data and the outbound arcs

represent the data they produce. Hence, the arcs materialize

the data dependencies.

In this paper, we primarily focus on dynamic dataflow

models [8], which provide a high expressiveness and limit the

constraints imposed to developers. Indeed, decidable models

like synchronous dataflow allow correctness analysis with

formal methods, static and deadlock-free actor scheduling,

etc., but that comes at the price of a reduced expressiveness



and ease of modeling. Thus, these models are not always

suitable for all the requirements, especially in the case of

applications processing dynamic streams. So the dynamic

dataflow models targeted by our approach would usually not

support model analysis and verification, but rather emphasize

programmability and ease of modeling.

The absence of outstanding dataflow languages is slow-

ing down the adoption for industrial development. Indeed,

although some languages have been designed, they remain at

the state of research prototypes. It is important for the industry

to rely on standard technologies to ensure the durability of

their products. Thus, the only viable alternatives appear to be

the use of dataflow frameworks based on standard languages,

which are de facto imperative or object-oriented languages.

See for example PEDF in Section IV, CILK [9], or the initial

version of STREAMIT [10].

Executing a dataflow application under the control of an

interactive debugger would allow developers to clearly un-

derstand the subtleties of the execution flow. Well-crafted

breakpoints and step-by-step execution can highlight problems

in complex situations, which would have been impossible to

foresee with manual code analysis or trace tools. Developers

can also use debuggers to monitor and profile applications.

This allows them to have real-time feedback about the actual

application execution, which may depend of the underlying

platform or the local environment. Furthermore, the deter-

ministic nature of dataflow communications fades away the

intrusiveness brought by debugger breakpoints and user inter-

actions. Indeed, the execution semantic is not altered by the

slowdown they introduce.

However, it appears that current interactive debuggers only

provide programming-language level features, and actually

only for imperative languages. Apart from threads and pro-

cesses, none of the high-level concepts used by developers to

build dataflow applications are materialized in current tools.

We believe that the next generation of debuggers should take

into account the programming model as well as the runtime

environment of applications. Indeed, they have a key role in the

overall execution and they reflect the programming guidelines

followed during development.

Therefore, the main contribution of this article is a novel

approach for the design of interactive debuggers, which de-

scribes the key functionalities that should be provided to allow

an efficient debugging of dataflow applications. We also detail

how this approach has been implemented with an industrial

dataflow framework for an MPSOC system, on top of GDB,

a popular free debugger.

This article is structured as follows: in Section II we

introduce the problems encountered during dataflow appli-

cation interactive debugging. Then, we detail in Section III

our proposal for an efficient dataflow-aware debugger. In

Section IV we describe how we applied the approach in

the context of an embedded dataflow framework developed

by STMICROELECTRONICS. We present how our proof-of-

concept debugger was implemented as a GDB extension in

Section V and we illustrate its usage in Section VI with

the debugging of a video decoding application case study. In

Section VII, we discuss the existing work related to debugging

applications running on dataflow machines as well as runtime

and model awareness in the context of component-based

software engineering and task-based parallel programming.

Finally, Section VIII summarizes the contributions of this

paper and details the future work.

II. DATAFLOW DEBUGGING CHALLENGES

Interactive debugging is a complex activity where develop-

ers try to figure out where the actual code behaviour diverges

from expectations. To do that, they must have a total and

precise control over the application execution.

While debugging dataflow applications, developers face a

significant number of challenges which do not exist in tradi-

tional von Neumann code. In order to improve the efficiency

of the bug tracking activity, the debugger has to accommodate

with such difficulties:

Tools Too Low-Level As current dataflow applications are

built on top of non-dataflow languages, debuggers are

not, natively, able to provide any information specific to

the dataflow nature of the application.

Token-Based Execution Firing The execution of a dataflow

actor can only start when the required input tokens have

been generated. This concept does not exist in the von

Neumann model, where the execution of a statement is

only conditioned by the path of the program counter.

Non-Linear Execution When a dataflow assignment instruc-

tion is executed, the actor(s) connected to this data

become(s) executable. Semantically, the execution flow

is forked and follows not only its normal stream but also

the different outgoing arcs of the node.

Graph-Based Application Architecture The architecture of

the application is structured by its data-dependency graph.

However, current debuggers only offer a sequential – or

multi-sequential if the runtime environment is parallel –

view of the source code instruction stream. All the arcs

of the graph are unavailable to developers.

Token-Based Application State The validity of a dataflow

algorithm depends on the correct dispatching of data

tokens. As in the theoretical models, nodes are supposed

to be stateless, the set of tokens present in the application

holds the entire execution state. Thus, it is important for

developers to have the ability to query the debugger about

these tokens. Current tools are not aware of this concept

and thus are unable to provide such information.

Information Flow Dataflow applications can be composed of

a significant number of actors, which successively apply

a specific transformation to their incoming data. In order

to understand the current value of a token, developers

have to figure out the exact sequence of transformations

undergone by this token. More concretely, this implies

that the debugger should record the different token values

over their processing steps.

If we think about the execution of the dataflow application

as a state diagram, we can understand that some of the





P2012 is a low power, parallel and embedded platform

research project developed by STMICROELECTRONICS and

CEA. It targets high-definition audio and video processing.

The platform is shaped as an accelerator architecture, using a

multicore general-purpose ARM processor on the host1 side

and clusters of STXP70 configurable processors on the fabric

side. As depicted in Figure 1, the processing elements of a

cluster share the L1 memory. Inter-cluster communication is

done through the L2 memory, whereas host-fabric exchanges

are performed by DMA2 controllers with the L3 memory.

P2012 also supports heterogeneous computing: hardware

accelerators can be wired into the fabric and controlled by the

associated processing element. One of the key objectives of

such a platform is to support an efficient H.265/HEVC video

decoder [12].

In this work, we focused the development of our prototype

on the functional simulator of P2012 (at time of writing, there

is no real platform available). This simulator runs on standard

development workstations and uses SYSTEMC3 threads to

simulate the different processors.

PEDF is a framework for dynamic hybrid dataflow program-

ming, designed to exploit P2012 heterogeneous architecture.

It provides a structure dataflow model, similar to what is

presented in [7]. PEDF also originates from dynamic dataflow

modeling, so it does not enforce any constraint in actor’s send-

ing and receiving rates. Besides, it offers advanced scheduling

capabilities, allowing the modification of the dataflow graph

behavior during its execution (based on a set of predicates)

or run some parts of the graph at different rates. It is based

on the C++ language to benefit from the existing tool-chain

(the compilation suite, but also the platform simulators). PEDF

defines three classes of entities:

Filter It is a computing entity, corresponding directly to the

actors of the dataflow model. Filters have inbound and

outbound data links. The code of a filter is written in

a subset of the C language which will be eventually

synthesized into a hardware accelerator.

Controller There is one controller per module, which is

responsible for the scheduling of the relevant filters (i.e.

registering filters for execution to the runtime system),

according to the application algorithm. A controller runs

on a processing element of the fabric.

Module It corresponds to a sub-graph of filters plus a con-

troller. Like filters, modules have inbound and outbound

data links, corresponding to the unconnected arcs of

the inner graph. Thus, modules can be hierarchically

interconnected.

Figure 2 presents the visual representation of a simple

module, composed of two filters and a controller.

In the remaining of this section, we describe how we can

build and implement this module with PEDF, as well as the

debugging features associated with each of the steps.

1We use the term host to refer to the general-purpose processor of the
platform, which is different from its remote debugging/development meaning.

2Direct Memory Access
3http://www.systemc.org
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Fig. 2: PEDF Dataflow Graph Visual Representation

A. Designing the Data-Dependency Graph

The PEDF dataflow graph is built with the MIND
4 ar-

chitecture compilation tool-chain, augmented with PEDF an-

notations. MIND provides a description language to specify

filter’s architecture and interfaces. Its compiler generates a

C++ version of the architecture, based on PEDF and platform-

specific templates. Module entities are in charge of defining

inter-filter bindings.

The following code excerpt presents the definition of Mod-

ule AModule, which contains a controller and two filters. It

has two external connections. The filter definition is presented

afterwards. In the last lines of the module definition, we can

see how the different connections are bound together. The

graph in Figure 2 was generated from this description.

@Module

composite AModule {
contains as controller {

output U32 as cmd_out_1;

output U32 as cmd_out_2;

source ctrl_source.c;

}

// External connections

input U32 as module_in;

output U32 as module_out;

// Sub-components

contains AFilter as filter_1;

contains AFilter as filter_2;

// Connections

binds controller.cmd_out_1

to filter_1.cmd_in;

binds controller.cmd_out_2

to filter_2.cmd_in;

binds this.module_in

to filter_1.an_input;

binds filter_1.an_output

4http://mind.ow2.org/



to filter_2.an_input;

binds filter_2.an_output

to this.module_out;

}

Both filters are defined by the primitive type AFilter

presented below. They have private and attribute data, as well

as an input and an output data dependency. They also have a

control input dependency.

@Filter

primitive AFilter {
data stddefs.h:U32 a_private_data;

attribute stddefs.h:U32 an_attribute;

source the_source.c;

input stddefs.h:U32 as an_input;

input stddefs.h:U8 as cmd_in;

output stddefs.h:U32 as an_output;

}

Contribution #1: Graph Reconstruction

On the debugger side, this graph structure will be dynamically

reconstructed during the initialization phase of the framework.

As it is a key abstraction for the application architecture,

it is made directly available to developers through all of

the dataflow-related functionalities of the debugger. Auto-

completion capabilities make it straightforward for developers

to use filter and connection names while they are typing their

commands.

The graph is shown upon user request and can either be

updated in real time or only when the execution is stopped.

(The former case may introduce an additional delay, due to

the graph generation time.)

B. Module Controller Execution

Module controllers are responsible for triggering the exe-

cution of the filters of their module. Filter execution model is

based on steps. For each step:

1) The controller decides which filter must be executed:

ACTOR_START(name).

2) The WORK method of filters scheduled for execution is

started.

3) The controller can wait for the actual beginning of the

execution: WAIT_FOR_ACTOR_INIT().

4) The controller can request filters to stop their execution

at the end of this step: ACTOR_SYNC(name).

5) The controller can wait for the actual end of the step:

WAIT_FOR_ACTOR_SYNC().

(NB: START and SYNC commands can be merged into a single

ACTOR_FIRE command).

This scheduling capability is not part of the common

dataflow models, although it shares some similarities with

the control tokens, with the exception that the deterministic

property is lost.

Contribution #2: Scheduling Monitoring

Our dataflow debugger captures this information, so that

developers can quickly review which filters are ready to be

executed, not scheduled, or have already finished the step.

Developers can also request an execution stop at the beginning

or end of a step, or when a controller schedules a filter for

execution.

C. Filters Data Processing

PEDF filters implement the core data processing tasks of

the application. They are intended to be synthesized into

hardware accelerators, and for this reason, strong constraints

have been defined for their implementation. In particular, the

use of a restricted subset of the C language, which permits a

direct transformation to RTL (Register Transfer Level) circuits.

Filters must define a WORK method, implementing one step of

the processing. They can access their private data, attributes

and connections with the name specified in the architecture

definition, prefixed by pedf.data., pedf.attribute.

and pedf.io., respectively.

With respect to the dataflow part, the data exchanges

are transparent to the developers. In the previous ex-

ample, a filter can read (resp. write) its data with

pedf.io.an_input[n] = d; where n is the highest

unread (unwritten) index. (This array notation corresponds to

the structure model of dataflow mentioned earlier.)

Contribution #3: Execution Flow Monitoring

On the debugger side, we focused on the flow-of-token aspect,

which is key to the dataflow model. Namely, we enabled the

possibility of following a token through a dependency by

intercepting the indexes of the token pushed in and out of

the link. As the model and the implementation ensure that the

data order is preserved, we can stop the execution at the right

location in a deterministic way.

In this section, we have detailed our contribution to improve

interactive debugging of PEDF applications. This consists in

adapting the debugger features to the dataflow programming

model: we introduced debugging abstractions closely matching

PEDF dataflow actors (filters, modules and controllers). We

also detailed how to refined the debugger’s commands to better

take into account the graph structure of the application. We

finally described new functionalities to exploit the scheduling

capabilities of PEDF controllers.

In the following section, we introduce the inner implemen-

tation specificities of this debugger and how we extended GDB

to build it.

V. EXTENDING GDB TO SUPPORT DATAFLOW DEBUGGING

GDB is the debugger of the GNU project [13]. It has a

very large user community in both general and embedded

computing. We decided to base our work on this tool because

of its advanced process inspection and control capabilities and

to simplify user and products handovers. Moreover, recent

versions of GDB export PYTHON bindings, which allow an

easy and efficient development of extensions. Thus, all the

classic functionalities of GDB are available in our debugger.

Figure 3 presents a schematic representation of a traditional

debugger like GDB connected to an MPSOC platform, as well

as our dataflow-awareness extension.



Fig. 3: Two-level debugging of an MPSOC platform.

In order to limit the intrusiveness of the debugging in the

execution, we decided not to alter the dataflow framework.

Therefore, the debugger needs to update its internal represen-

tations whenever a dataflow event occurs.

Our runtime-information capture mechanism relies on in-

ternal function breakpoints set at the entry and exit points

of the programming-model related functions exported by the

dataflow framework. Based on the API definition, calling

conventions and debug information, we parse the relevant

function arguments to extract the information required to

update the debugger internal state.

Function breakpoints extend the traditional breakpoint

mechanism by attaching to the breakpoint the semantic defini-

tion of the operation it monitors. Each time the breakpoint is

triggered, a specific action is executed to update the internal

representations. Based on PEDF API and source code, we

elected the locations responsible for key dataflow operations

and implemented the corresponding representation modifica-

tion back to the debugger’s function breakpoints. The concept

of finish breakpoint was also introduced in GDB PYTHON API

to programmatically catch the return point of a function. This

allows the interception of output and updated parameters.

The top part of Figure 3 presents the internal representation

used to describe a dataflow application:

Actor objects represent the filters, controllers and modules

of the PEDF application. We keep a reference to the

execution context to which they are bound and their list

of inbound and outbound connections.

Token objects are created and transmitted over the different

debugger dataflow entities. They are not associated with

any framework object, their state only correspond to the

logical implications of runtime events. They can trigger

an execution stop when they reach their target actor, or

according to the content of their payload.

Connection objects correspond to a data dependency of an

ACTOR object. They are associated with the simulator

entity responsible for the data transfer. These objects

produce or consume TOKEN objects when the corre-

sponding event is produced by the simulator. They are

also responsible for stopping the execution if the relevant

conditions are met.

Link objects bound together an incoming and an outgoing

connection. They receive, hold and transmit TOKEN ob-

jects required by CONNECTION objects.

In the current PEDF implementation, the framework API

and implementation are rich enough to capture all the infor-

mation required to implement our support. The only static

information we rely on is provided through the standard

DWARF [14] debug structures.

However, in other dataflow frameworks, further compile-

time information might be required, such as details about the

implementation of the actors or the graph of data dependen-

cies.

Using only standard debug information allows developers

to connect more easily our debugger to their application, as it

does not require any specific recompilation. On the other side,

we could exploit compiler-generated information to enrich our

model and improve the overall performance.

Indeed, our frequent use of breakpoints introduces a slow-

down in the application. This is mainly due to the breakpoints

related to data exchanges, which can be triggered very fre-

quently in a fine-grain dataflow application. In order to cope

with this problem, two options have been considered:

• DISABLING THE DATA EXCHANGE BREAKPOINTS until

the “critical part” of the execution is reached. Control

tokens do not rely on the same breakpoints, so they can

still be used. Source code actor-specific breakpoints and

watchpoints can also help reaching the suspicious area

more rapidly.

• FRAMEWORK COOPERATION If the framework could

provide actor-specific location for data exchange break-

points, then the set of enabled breakpoints could be

reduced to the actors of interest. This would significantly

improve performance during the non-interactive parts of

the execution.

For the sake of simplicity, only the first option has been

implemented so far.

In the following section, we detail a case study experimen-

tation illustrating how we used this debugger to control the

execution of a video decoder based on PEDF and running on

P2012 MPSOC.

VI. CASE STUDY: DEBUGGING A H.264 VIDEO DECODER

This section presents a case study which illustrates our

approach in the context of a real-world application: a H.264

video decoder [15] designed with PEDF to exploit Platform

2012 heterogeneous computing fabric. In the following, we

come back on the challenges highlighted in Section II and

explain how each point is addressed by our debugger.5

5We assume that the reader is familiar with GDB command-line syntax.
Otherwise, please refer to [13].
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Fig. 4: Graph of Dataflow Actors and Data Dependency of a

H.264 Video Decoder

A. Graph-Based Application Architecture

During the design of the P2012 H.264 decoder application,

a special focus was put on the module/filter decomposition.

Indeed, as filters are intended to be synthesized into hardware

accelerators, it was important to optimize their architecture and

interactions. The graph presented in Figure 4 is a simplified

version of the application architecture, based on its dataflow

dependencies. It is composed of two modules, front and

pred. Each module contains a controller (the green rectangu-

lar boxes) and a set of filters (the round boxes). The arrows

connecting the different entities materialize data-dependencies.

We can distinguish three different types: plain-line arrows

are pure data links between hardware filters, whereas dotted

and dashed arrows correspond to control links, which may be

assisted by DMA controllers (the dashed lines).

As we mentioned earlier, this graph is a key element

for the application architecture. Thus, it is available through

most of the dataflow-related commands. See for instance the

command ❶ in the next subsection, where filter and interface

names where suggested by the auto-completion mechanism.

In the current implementation, the graph is plotted with

Graphviz6 DOT format and displayed with the system’s default

image visualizer. However, a debugger with a graphical inter-

face could provide a more interactive view where the graph

elements can be directly used to interact with the debugger.

B. Token-Based Execution Firing

As we described in Section IV-B, PEDF dataflow model

differs from the traditional models, in the sense that the

execution of an actor is first of all conditioned by the triggering

of a fire event by its module controller. This event can be

interpreted as a special control token in the dataflow semantic,

or as an asynchronous function call in the imperative semantic.

Developers can handle it with the following catchpoint

command. In this case, it stops the execution when the WORK

method of Filter pipe is triggered:

6http://www.graphviz.org/

(gdb) filter pipe catch work

The execution can also be stopped when a filter has received

a given amount of tokens:

(gdb) filter ipred catch Pipe_in=1, \
Hwcfg_in=1 ❶

(gdb) filter ipred catch *in=1 ❷

These two commands stop the execution as soon as Filter

ipred has received a token in both of its two inbound data

links, Pipe_in and Hwcfg_in. The first command ❶ shows

the explicit way, interface by interface, whereas the second

one ❷ applies the condition to all the inbound interfaces. The

syntax can be applied to any interfaces of a given filter.

C. Non-Linear Execution

During step-by-step execution of filter code, a special at-

tention must be put on dataflow assignment. Indeed, such

instructions may enable and trigger the execution of the filter

dependent on this data. To accommodate with this eventuality,

our debugger offers the step_both command, which inserts

a “double” breakpoint, at both ends of the link:

(gdb) list

220 // push add2dBlock to ipf

221 pedf.io.Add2Dblock_ipf_out[...] = ...;

(gdb) step_both

[Temporary breakpoint inserted after input

interface ‘ipf::Add2Dblock_ipred_in’]

[Temporary breakpoint inserted after outpt

interface ‘ipred::Add2Dblock_ipf_out‘]

...

[Stopped after receiving token

from ‘ipf::Add2Dblock_ipred_in’]

(gdb) continue

...

[Stopped after sending token

on ‘ipred::Add2Dblock_MB_out‘]

In this excerpt, the execution was stopped right before the

execution of a dataflow assignment (line 221), where a piece of

data is sent though Filter ipred’s Add2Dblock_ipf_out

interface. The command step_both instructs the debugger

to stop both ends of the execution. The execution flow first

reaches the ipf filter, on the other side of the data depen-

dency. Then the developer orders to continue the execution and

finally the second stop occurs, right after the assignment. The

order of these two stops is implementation and architecture

dependent.

D. Token-Based Application State and Information Flow

The fluency of the token flow in the overall application is

an important concern for correctness and performance. If two

filters connected by a data-dependency do not produce and

consume tokens at the same rate, the application may stall

because of link over/underflow. It can also lead to erratic

results if the synchronization of multiple interfaces is not

respected.

As an example, the graph presented in Figure 4 shows

that the link pipe → ipf currently holds 20 tokens, which



may indicate a problem in the sending or receiving rate. Link

hwcfg → pipe contains three tokens, and all the other

links are empty. Our debugger can also record and display the

content of the tokens. This feature may require a significant

quantity of memory, thus it has to be explicitly enabled:

(gdb) iface hwcfg::pipe_MbType_out record

...

(gdb) iface hwcfg::pipe_MbType_out print

#1 (U16) 5

#2 (U16) 10

#3 (U16) 15

In this example, only three messages were recorded, but a

communication-intensive filter may quickly generate a large

number of tokens, impossible to record efficiently and useless

for developers.

Filters can also exhibit clear patterns in their communication

behavior. This characteristic can be exploited by our debugger

to improve the details about the information flow. Indeed, this

allows following a token over several components. However,

as this behavior depends of the filter implementation, the

debugger cannot automatically figure it out. The developer has

to provide it manually to the tool.

For instance, Filter red acts as a splitter: it receives data

from Filter bh, processes it and sends the data it generated

to all of its outbound interfaces. This can be provided our

debugger with the following command:

(gdb) filter red configure splitter

To better explain the purpose of this feature, we need to

place ourselves in a more concrete situation. Let us consider

that there is an observable error at some point of the execution.

With the help of the mechanisms previously described, the

developer stops the execution as close as possible to the error

trigger. For instance in Filter pipe, after receiving a token

from Interface Red2PipeCbMB_in:

(gdb) filter pipe catch Red2PipeCbMB_in

...

[Stopped after receiving token

from ‘pipe::Red2PipeCbMB_in’]

At this point, the developer ensures that the situation is

actually erroneous and tries to understand where the fault came

from. Token path becomes useful:

(gdb) filter pipe info last_token

#1 red -> pipe (CbCrMB_t){Add=0x145D,...}❶

#2 bh -> red (U32) 127 }, ❷

We can see that the last token was received from Filter

red (step ❶), with a given value. If this value is incorrect,

it means that the error arrived from Filter red. Step ❷

helps understanding the conditions in which this token was

produced: after receiving an integer token (127) from Filter

bh. To complete this information, further details about the

filter state can be recorded, such as attribute values.

Recording token contents may appear excessive when

querying the content of a single link (it could be directly read

from the framework memory), however it becomes mandatory

when we want to follow its path over multiple actors.

E. Two-level Debugging

We are aware that a dataflow debugger may not be enough

to locate and understand all the possible problems which can

occur during the execution of a dataflow application. For this

reason, a traditional, full-flavored GDB is always available

during the debugging session. Our debugger extension only

handles the dataflow-specific commands, and the underlying

GDB manages the rest of the debugging environment. This

means that when the execution is stopped, like in a previous

example, the developer can ask our extension to display the

last token received and then use GDB to analyze its C structure

and inner content:

...

[Stopped after receiving token

from ‘pipe::Red2PipeCbMB_in’]

(gdb) filter print last_token

$1 = (CbCrMB_t){Addr=0x145D, ...}
(gdb) print $1

$2 = { Addr = 0x145D,

InterNotIntra = 1,

Izz = 168460492, ... }

F. Qualitative Analysis

Debugging such an application with current debuggers, like

a standard GDB, would be quite challenging. The current

P2012 simulator relies on user-level threading for the im-

plementation of the different processors, which are usually

not correctly handled (only a few kernel-level threads are

detected). But even with user-level thread support, the tools

would not be able to distinguish the framework (or the

simulator) code from the application itself. Hence, developers

would have to look for the relevant information in the middle

of all the runtime libraries. These pieces of information are

frequently mangled: for instance, filter Ipf WORK method

correspond to the symbol IpfFilter_work_function

whereas controller pred_controller WORK method is

__component_PredModule_anon_0_work. Only in-

formation about the filter currently running (if any) could be

retrieved at a given time.

Some other information is just unavailable, like the architec-

ture graph. Hence, developers would have to refer to architec-

ture description files and apply at their best this information to

the current runtime context. Another example is the number

of tokens accumulated in a given data link. This figure can

be manually computed, with breakpoints set at both ends of

the link and a pen and paper count, but this is tedious and

error-prone.

In order to further validate the efficiency of our approach,

it would be interesting to measure the time required to locate

different kinds of bugs, for instance related to the dataflow

architecture, the token passing or the application algorithm

itself. These results could be compared against more common

methods like source-level debuggers or execution traces anal-

ysis. It would also be interesting to study how our tool can

help during the early development of complex applications,

when the entire architecture is being assembled.



In the following section, we discuss the related work focus-

ing on the debugging of complex applications and program-

ming models.

VII. RELATED WORK

Our approach can be related to different research areas. In

the first part of this section, we introduce a study focusing

on task-based parallel application debugging. After that, we

present how a similar debugging approach has been applied

to component-oriented applications. Then, we describe the

programming environment of the STREAMIT language, which

features a dataflow debugger. Finally, we introduce a study

from 1988 proposing a methodology for debugging dataflow

machines. To our knowledge, this is the only research study

available related to dataflow debugging.

A. Task-Based Parallel Application Debugging

TEMANEJO [16] is a debugger for the task-based STARSS

programming models. These models, similarly to dataflow

programming, put an important focus on the data dependencies

of the different task which form the application. The runtime

framework of such applications is in charge of executing

the different tasks in parallel while preserving the correct

ordering. The debugger is able to follow and reconstruct the

graph of task executions. This graph is useful to developers as

its structure is not known at compile time. Additionally, the

debugger also allows developers to control task executions.

It can change their priority, block them or measure their

duration. TEMANEJO can also launch a debugger (i.e. GDB)

upon specific events, like the beginning of a task execution.

Although the tool offers interesting representations, it cur-

rently lacks advanced interactive debugging commands. In-

deed, TEMANEJO is totally decoupled from GDB, hence

neither of the tools can benefit from the other. GDB remains

at source level, and TEMANEJO cannot provide any language-

related information.

B. Component-Based Application Debugging

Our previous article [17] is closely related to this work. It

describes how the idea of enhancing interactive debuggers with

the help of programming models can be applied to component-

based software engineering. In this model, components are

standalone computational entities. They are meant to perform

a formally specified task, and it should be possible to reuse a

component in another application without any modification.

Components provide services based on the data supplied

on their input interfaces and serve the response on output

interfaces. Thus, a component application can be built just

with the inter-binding of the relevant components.

The proposed approach explains how debuggers can be

tailored to component-based application. This includes the

ability to set breakpoints on component execution and inter-

face exchanges, but also on messages being transmitted over

different components.

Debugging these applications is challenging because of their

complex and dynamic architecture. In opposition with dataflow

applications, the interconnection of component interfaces can

be changed at runtime, for instance to adapt the application

to runtime constraints. Components may also be executed in

parallel to improve performance. For similar reasons to those

described in Section II, traditional tools are not adapted to

debugging component-based applications either. However, the

concept of token/message is not as important in component-

based software engineering as it is in dataflow models. The

information transmitted from one component to another is

primarily a service request or response. In dataflow, as we

described in Section II and illustrated in Section VI, they hold

an important part of the application state. The non-linearity of

the execution is also more prominent in dataflow application

debugging.

C. StreamIt Debugger

STREAMIT is a programming language for high-

performance streaming applications [10], which shares

properties with the dataflow models and in particular

synchronous dataflow. The STREAMIT Development Tool [18]

provides a graphical environment to assist the coding and

debugging of stream applications. The environment provides a

graphical debugging tool adapted to STREAMIT programming

language. Similarly to our approach, their debugger takes into

accounts STREAMIT specificities and allows developers to

interact with a graph representation of the application. They

also display information about the communication channels,

such as the token they hold or stream statistics.

So their tool appears to solve some of the challenges we

describe in Section II, like the graph-based architecture or the

token-based execution filtering and application state. However,

they did not focus on the problems of dynamic dataflow, as

STREAMIT is a synchronous dataflow language: all data must

be received before execution and the date of actors input and

output tokens is defined at compile time. So a substantial

part of the interactive debug challenges is avoided. Finally,

it appears that they do not address the issues of the non-linear

execution or following the information flow.

D. Dataflow Application Debugging

In an article from 1988, Wahl et al. described a debugging

methodology for distributed dataflow program [19], which

shares similarities with our approach. However, at that time,

they still had faith in real dataflow machines, with non von

Neumann architectures. Their methodology points out that

they wanted “to allow the user to debug a program in a way

that is close to his or her conceptual model of the program.”

They also mentioned that “at the same time, the user must

be supplied with a set of debugging commands that includes

those with which he and she is familiar with in the context of

uni-processor von Neumann machines.” We intimately share

these convictions, which drove our work for this paper.

The methodology they proposed is close to our contribution,

however they only skimmed over the interactive debugging

aspect and they did not provide details about its actual us-

age. Our approach extends and deepens this specific aspect.



Furthermore, they explained that their methodology relies on

a dataflow machine simulators, which have to be modified to

support debugging. This requirement strongly limits the scope

of their work, as their debugging module would have to be

implemented at hardware level. Our approach does not face

this problem. Indeed, the debugger only interacts with the

software dataflow framework.

VIII. CONCLUSION AND FUTURE WORK

In this article, we introduced our new approach to debugging

dataflow applications interactively. We noticed some flaws in

the available tools, which are not adapted to the debugging

of current dataflow applications. These applications rely on

frameworks written on top of imperative or object-oriented

languages, but traditional debuggers only operate at source-

language level and do not account for the dataflow abstractions

introduced by the programming model.

We presented the main issues faced by developers when they

try to debug such applications, which are related to the graph

structure of the architecture, the token-based actor firing and

application state, the non-linear execution and the complex

flow of information over the different actors. We described

our contribution to lighten these difficulties, an approach

where debuggers are able to provide developers with high-

level abstractions related to the dataflow programming model.

Based on the detection and interpretation of key events in

the execution of the dataflow framework, our approach allows

the debugger to take into account the data-dependency graph

and dynamically track the tokens flowing into the application.

Thus, our approach offers a better overview of the actual state

of dataflow applications. It also allows setting breakpoints

on specific actors, on their data dependencies or directly on

tokens.

Then, we described how we applied this approach to

Predicated Execution Dataflow, an industrial parallel dataflow

framework for the MPSOC system Platform 2012, developed

by STMICROELECTRONICS and CEA. We presented the dif-

ferent parts of the framework API, along with the associated

debug capabilities. We also detailed how we developed a

proof-of-concept debugger as an extension of GDB, the free

debugger of the GNU project. GDB is frequently used to

debug applications running on embedded systems. Based on

its PYTHON API, we introduced the concept of function

breakpoints as an extension of the traditional breakpoints.

These breakpoints are tailored to the framework function they

monitor and update the debugger internal representations each

time their function is executed.

Finally, we presented a case study that illustrates the debug-

ging of a H.264 video decoding application. We confronted our

tool with the challenges presented earlier and we highlighted

how our approach can facilitate developers debugging task, in

comparison with the available tools.

Interactive debugging of complex applications based on

their programming model appears to be a promising direc-

tion to lighten the bug tracking hassle. In future work, we

will investigate how the idea of leveraging the programming

model to improve the debugging experience can be applied to

different models, and how visualization can help developers to

better understand the details of the execution. We expect our

debugger to be able to easily encompass new models, thanks

to a generic code base. Using GDB as the low-end debugger

should also help other framework developers to adapt our tool

to their environment.
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