

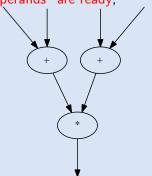
STMicroelectronics LIG University of Grenoble

Interactive Debugging of Dynamic Dataflow Embedded Applications.

<u>Kevin Pouget</u>, Patricia Lopez Cueva, Miguel Santana, Jean-François Méhaut

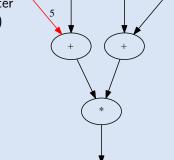
Embedded System Development

- High-resolution multimedia app. ⇒ high performance expectations.
 - H.265 HEVC
 - Augmented reality,
 - 4K digital television
 - ...
- Sharp time-to-market constraints
- → Important demand for
 - Powerful parallel architectures
 - MultiProcessor on Chip (MPSoC)
 - · Convenient programming methodologies
 - Dynamic dataflow programming
 - Efficient verification and validation tools
 - Our research contribution

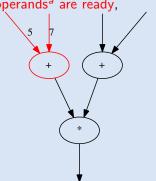


MultiProcessor on Chip (MPSoC)

- Parallel architecture
 - More difficult to program
- Maybe heterogeneous
 - Application-specific processors,
 - Hardware accelerators.
 - GPU-like architecture (OS-less processors)
- Embedded system
 - Constrained environment.
 - On-board debugging complicated
 - ightarrow performance debugging only
 - Limited-scale functional debugging on simulators

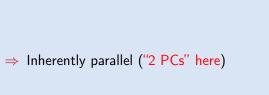


- Alternative to von Neumann model $(\leftrightarrow C/ASM)$
- Instructions executed when their operands are ready, not when the Instruction Pointer (aka. Program Counter, %PC) reaches it.


- ⇒ Inherently parallel
- ⇒ Today: coarser granularity, with imperative/object instruction blocks
- ___aoperand == token == message

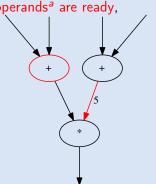
- Alternative to *von Neumann* model (\leftrightarrow C/ASM)
- Instructions executed when their operands are ready, not when the Instruction Pointer (aka. Program Counter, %PC) reaches it.

- ⇒ Inherently parallel
- ⇒ Today: coarser granularity, with imperative/object instruction blocks
- operand == token == message

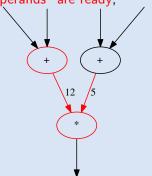

- Alternative to von Neumann model $(\leftrightarrow C/ASM)$
- Instructions executed when their operands are ready, not when the Instruction Pointer (aka. Program Counter, %PC) reaches it.

- ⇒ Inherently parallel
- ⇒ Today: coarser granularity, with imperative/object instruction blocks
- operand == token == message

Dataflow Programming


- Alternative to *von Neumann* model (\leftrightarrow C/ASM)
- Instructions executed when their operands are ready, not when the Instruction Pointer (aka. Program Counter, %PC) reaches it.

⇒ Today: coarser granularity, with imperative/object instruction blocks

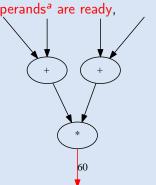

____operand == token == message

- Alternative to von Neumann model $(\leftrightarrow C/ASM)$
- Instructions executed when their operands are ready, not when the Instruction Pointer (aka. Program Counter, %PC) reaches it.

- ⇒ Inherently parallel
- ⇒ Today: coarser granularity, with imperative/object instruction blocks
- operand == token == message

- Alternative to von Neumann model $(\leftrightarrow C/ASM)$
- Instructions executed when their operands are ready, not when the Instruction Pointer (aka. Program Counter, %PC) reaches it.

- ⇒ Inherently parallel
- ⇒ Today: coarser granularity, with imperative/object instruction blocks
- ___aoperand == token == message


- Alternative to *von Neumann* model (\leftrightarrow C/ASM)
- Instructions executed when their operands are ready, not when the Instruction Pointer (aka. Program Counter, %PC) reaches it.
 - *

- ⇒ Inherently parallel
- ⇒ Today: coarser granularity, with imperative/object instruction blocks
- ____aoperand == token == message

- Alternative to *von Neumann* model (\leftrightarrow C/ASM)
- Instructions executed when their operands are ready, not when the Instruction Pointer (aka. Program Counter, %PC) reaches it.

- ⇒ Inherently parallel
- ⇒ Today: coarser granularity, with imperative/object instruction blocks

Different Dataflow Models

Decidable Dataflow

- Correctness analysis
- Deadlock-free static scheduling
- Powerful optimization

but:

- Strong constraints imposed to dev.
- Reduced expressiveness
 - no dynamic problem

Dynamic Dataflow

Different Dataflow Models

Decidable Dataflow

- Correctness analysis
- Deadlock-free static scheduling
- Powerful optimization

but:

- Strong constraints imposed to dev.
- Reduced expressiveness
 - no dynamic problem

Dynamic Dataflow

- Increased modeling flexibility
- Conditional token emission/rcption
- Variable input/output rates

but:

- Limited static analysis
- Debugging is not straightforward ©

Different Dataflow Models

Decidable Dataflow

Dynamic Dataflow

- Increased modeling flexibility
- Conditional token emission/rcption
- Variable input/output rates

but:

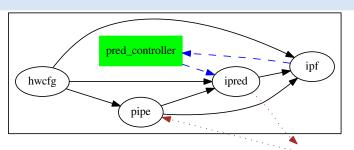
- Limited static analysis
- Debugging is not straightforward ©

```
ctlr out_1 out_1
```

```
WORK() { /* dyn_filter.c */
  flg = ctlr.next()
  cnt = ctlr.next()
  if (flg)
   out_1.send(treat(cnt))
  else
  for (i in 0:cnt)
      nxt = in.next()
   out_2.send(treat(nxt))
}
```

Agenda

- 1 Debugging Challenges of Dataflow Applications
- 2 Dataflow-Aware Interactive Debugging
- 3 Proof of Concept Implementation
- 4 Case Study: a H.264 Video Decoder
- **6** Conclusion


Agenda

- 1 Debugging Challenges of Dataflow Applications
- 2 Dataflow-Aware Interactive Debugging
- 3 Proof of Concept Implementation
- Case Study: a H.264 Video Decoder
- 6 Conclusion

Dataflow applications

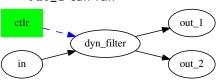
Graph-Based Architect. | Flow-Fork Instructions | Token-Based Execution

Single-threaded applications

ations Multi-threaded applications

• only one execution context

- multi-sequential execution
- flat organization:
 - no inter-thread relationship


Slide 7 — kevin.pouget@st.com — Dynamic Dataflow Applications Debugging — HIPS'13, Boston, USA — May 20th 2013

Dataflow applications

Graph-Based Architect. | Flow-Fork Instructions | Token-Based Execution

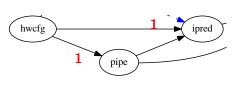
after this instruction:

- dyn_filr continues
- out_1 can run

Single-threaded applications

Multi-threaded applications

- %PC sequential execution
- simple flow-ctrl mechanisms:
 - functions, if-else, loops

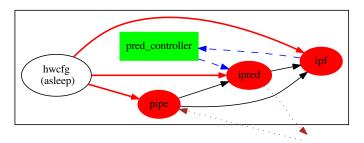


Dataflow applications

Graph-Based Architect. | Flow-Fork Instructions

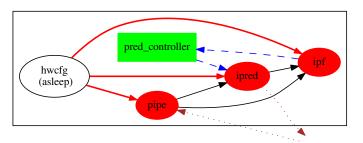
Token-Based Execution

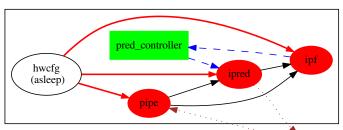
- no function calls
 - only async. filter activation
- tokens exchanged among filters
- filter execution conditioned by input tokens generation



Single-threaded applications

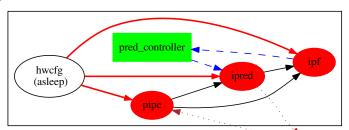
Multi-threaded applications


- %PC sequential execution
- simple flow-ctrl mechanisms:
 - functions, if-else, loops



- The application is frozen, how can GDB help us?
 - red filters are starving, waiting for data from the red link
 - filter hwcfg was not scheduled for execution by pred_controller
- hint: not much!


```
(gdb) info threads
Id Target Id Frame
1 Thread 0xf7e77b  0xf7ffd430 in __kernel_vsyscall ()
* 2 Thread 0xf7e797 operator= (val=..., this=0xa0a1330)
```




```
(gdb) thread apply all where
Thread 1 (Thread 0xf7e77b):
    0xf7ffd430 in __kernel_vsyscall ()
#0
#1
   0xf7fcd18c in pthread_cond_wait@ ()
#2
   0x0809748f in wait_for_command_completion(struct ... *)
#3
   0x0809596e in pred_controller_work_function()
#4
    0x08095cbc in entry(int, char**) ()
#5
    0x0809740a in host_launcher_entry_point ()
    0xf7fc9aff in start_thread ()
```

Example

Thread 2 (Thread 0xf7e797):

#0 operator= (val=..., this=0xa0a1330)

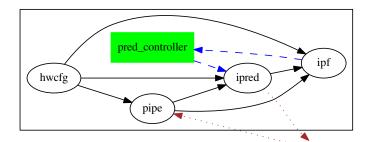

```
#1 pipeRead (data=0) at pipeFilter.c:154
154    Smb = pedf.io.hwcfgSmb[count];
#2 0x0804da63 in PipeFilter_work_function () at pipe.c:361
#3 0x080a4132 in PedfBaseFilter::controller (this=0xa0a0d18)
#4 0x080bec81 in sc_core::sc_process_b::semantics (this=0xa0a38)
#5 0x080c12f0 in sc_core::sc_thread_cor_fn (arg=0xa0a3598)
```

#6 0x08111831 in sc_core::sc_cor_qt_wrapper (...)

Objective

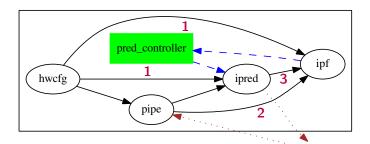
Provide debugger users with means to better understand the state of the dataflow execution and easily reach key transition events.

Agenda

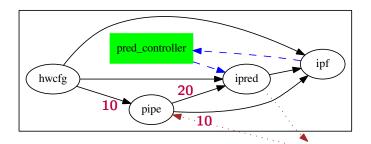

- ① Debugging Challenges of Dataflow Applications
- 2 Dataflow-Aware Interactive Debugging
- 3 Proof of Concept Implementation
- Case Study: a H.264 Video Decoder
- 6 Conclusion

Idea: Integrate dataflow programming model concepts in interactive debugging

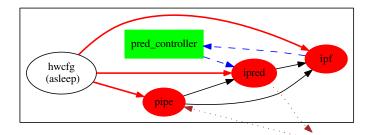
Integrate dataflow programming model concepts in interactive debugging


- model the application as a graph
- view token distribution
- sent/received counters on filter interfaces
- filter state: blocked waiting for more data? deadlocked ?

Integrate dataflow programming model concepts in interactive debugging


- model the application as a graph
- view token distribution
- sent/received counters on filter interfaces
- filter state: blocked waiting for more data? deadlocked ?

Integrate dataflow programming model concepts in interactive debugging

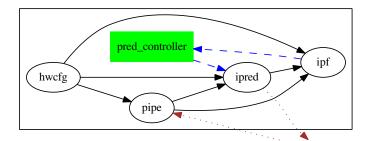

- model the application as a graph
- view token distribution
- sent/received counters on filter interfaces
- filter state: blocked waiting for more data? deadlocked ?

Integrate dataflow programming model concepts in interactive debugging

- model the application as a graph
- view token distribution
- sent/received counters on filter interfaces
- filter state: blocked waiting for more data? deadlocked ?

Integrate dataflow programming model concepts in interactive debugging

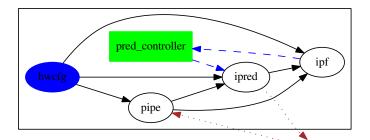
- model the application as a graph
- view token distribution
- sent/received counters on filter interfaces
- filter state: blocked waiting for more data? deadlocked?



Integrate dataflow programming model concepts in interactive debugging

Flow Control

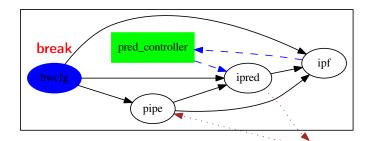
- filter is activated or terminates
- token generation/consumption
 - and allow conditional stops with token inspection



Integrate dataflow programming model concepts in interactive debugging

Flow Control

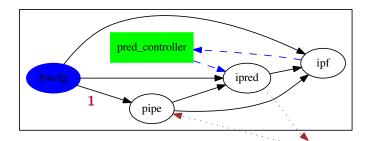
- filter is activated or terminates
- token generation/consumption
 - and allow conditional stops with token inspection



Integrate dataflow programming model concepts in interactive debugging

Flow Control

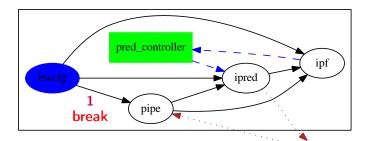
- filter is activated or terminates
- token generation/consumption
 - and allow conditional stops with token inspection



Integrate dataflow programming model concepts in interactive debugging

Flow Control

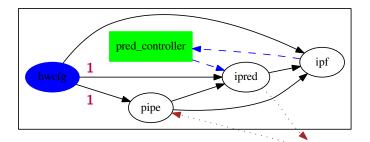
- filter is activated or terminates
- token generation/consumption
 - and allow conditional stops with token inspection



Integrate dataflow programming model concepts in interactive debugging

Flow Control

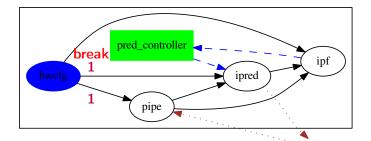
- filter is activated or terminates
- token generation/consumption
 - and allow conditional stops with token inspection



Integrate dataflow programming model concepts in interactive debugging

Flow Control

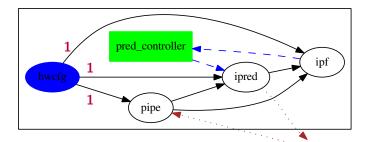
- filter is activated or terminates
- token generation/consumption
 - and allow conditional stops with token inspection



Integrate dataflow programming model concepts in interactive debugging

Flow Control

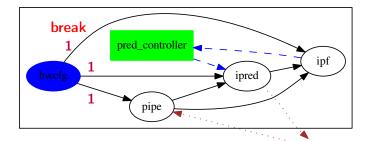
- filter is activated or terminates
- token generation/consumption
 - and allow conditional stops with token inspection



Integrate dataflow programming model concepts in interactive debugging

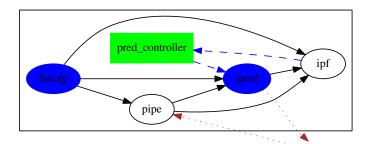
Flow Control

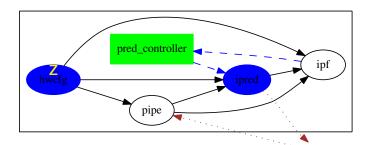
- filter is activated or terminates
- token generation/consumption
 - and allow conditional stops with token inspection



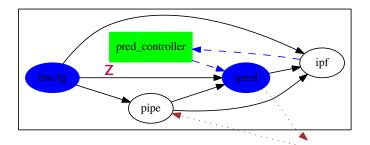
Integrate dataflow programming model concepts in interactive debugging

Flow Control

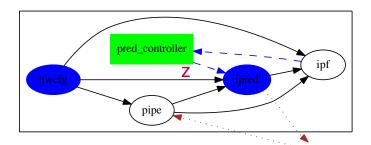

- filter is activated or terminates
- token generation/consumption
 - and allow conditional stops with token inspection


Integrate dataflow programming model concepts in interactive debugging

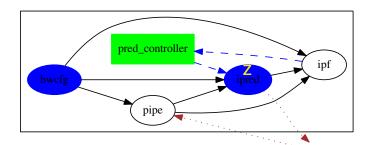
Flow Control / Step-by-step


Integrate dataflow programming model concepts in interactive debugging

Flow Control / Step-by-step


Integrate dataflow programming model concepts in interactive debugging

Flow Control / Step-by-step


Integrate dataflow programming model concepts in interactive debugging

Flow Control / Step-by-step

Integrate dataflow programming model concepts in interactive debugging

Flow Control / Step-by-step

Integrate dataflow programming model concepts in interactive debugging

Two-level Debugging

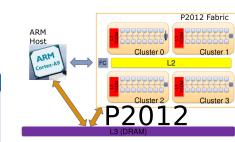
- source-code and symbol breakpoints
- line-by-line
- watchpoints, processor inspection, etc.

```
(gdb) next
(gdb) step
(gdb) break $pc + 0x45F
(gdb) break hwcfgFilter.c:27 if *mbType != 0xFFFFFFF
(gdb) watch *pedf.attr.cHwcfgQuant
```


Agenda

- Debugging Challenges of Dataflow Applications
- 2 Dataflow-Aware Interactive Debugging
- 3 Proof of Concept Implementation
- 4 Case Study: a H.264 Video Decoder
- 6 Conclusion

Proof-of-concept environment


Platform 2012

ST/CEA MPSoC research platform

Heterogeneous

• 4x16 CPU OS-less comp. fabric

Proof-of-concept environment


Dataflow Programming Model

- Predicated Execution DataFlow
 - Dataflow framework for H.265

Platform 2012

ST/CEA MPSoC research platform

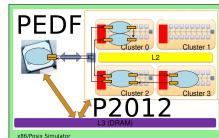
- Heterogeneous
- 4x16 CPU OS-less comp. fabric

Proof-of-concept environment

The Gnu Debugger

- Adapted to low level/C debugging
- Large user community

Dataflow Programming Model


- Predicated Execution DataFlow
 - Dataflow framework for H.265

Platform 2012

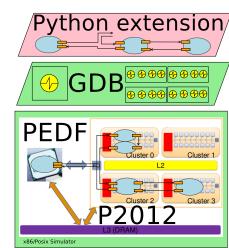
ST/CEA MPSoC research platform

- Heterogeneous
- 4x16 CPU OS-less comp. fabric

Proof-of-concept environment

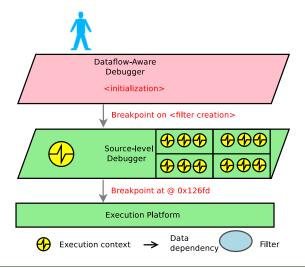
The Gnu Debugger

- Adapted to low level/C debugging
- Large user community
- Extendable with Python API

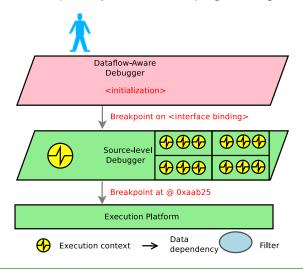

Dataflow Programming Model

- Predicated Execution DataFlow
 - Dataflow framework for H.265

Platform 2012

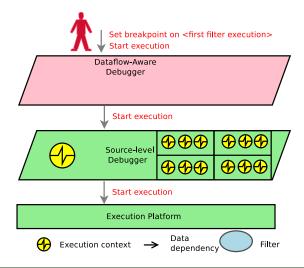

ST/CEA MPSoC research platform

- Heterogeneous
- 4x16 CPU OS-less comp. fabric

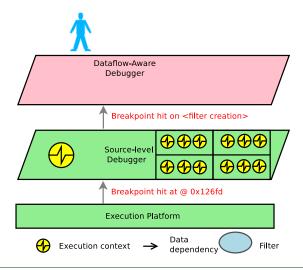

Work with framework events

Work with framework events

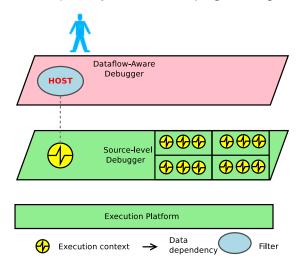
Work with framework events



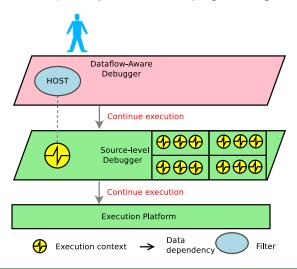
Work with framework events



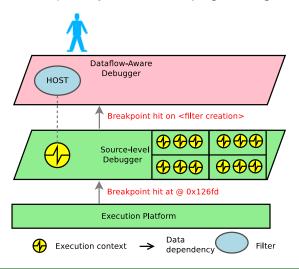
Work with framework events



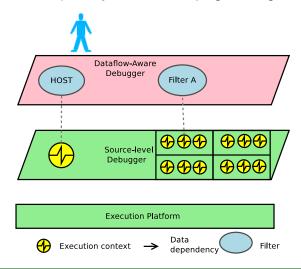
Work with framework events



Work with framework events

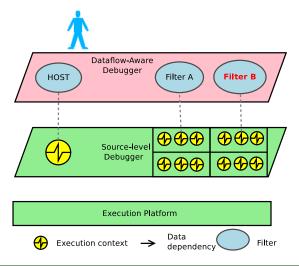


Work with framework events

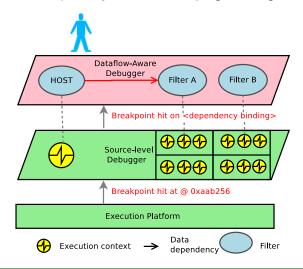


Work with framework events

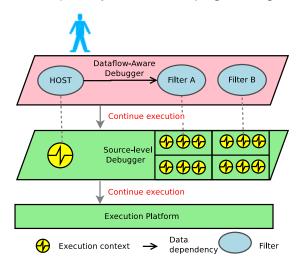
Work with framework events



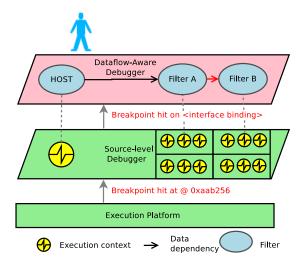
Work with framework events



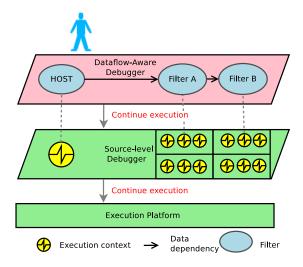
Work with framework events



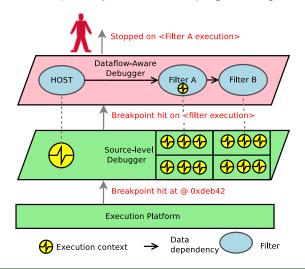
Work with framework events



Work with framework events

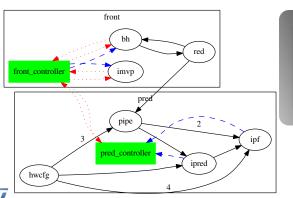


Work with framework events



Work with framework events

Work with framework events

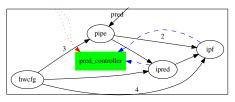

Agenda

- ① Debugging Challenges of Dataflow Applications
- 2 Dataflow-Aware Interactive Debugging
- 3 Proof of Concept Implementation
- 4 Case Study: a H.264 Video Decoder
- 6 Conclusion

Case Study: a H.264 Video Decoder

Overview

- dynamic dataflow application
- exploit P2012 heterogeneous capabilities
- eventually, filters ⇒ HW accelerators



H.264 logo by

Case Study: a H.264 Video Decoder

Application State

- Model the application as a graph
- View token distribution

Case Study: a H.264 Video Decoder Step-by-step

Next token send / received

```
(gdb) filter pipe next token out
...
[Stopped on token enqueued in 'Pipe2IpredCrMB_out -> ipred']
120 pedf.io.Pipe2IpredCrMB_out[count++] = *Pipe2IpredCrMB;

(gdb) filter ipred next token in
...
[Stopped on token received from 'Pipe2IpredCrMB_in <- pipe']
204 pedf.data.Pipe2IpredCrMB = pedf.io.Pipe2IpredCrMB_in[count-</pre>
```


Case Study: a H.264 Video Decoder Step-by-step

• Next token send / received

```
(gdb) filter pipe next token out
...
[Stopped on token enqueued in 'Pipe2IpredCrMB_out -> ipred']
```

120 pedf.io.Pipe2IpredCrMB_out[count++] = *Pipe2IpredCrMB;

```
(gdb) filter ipred next token in
```

```
[Stopped on token received from 'Pipe2IpredCrMB_in <- pipe']
204 pedf.data.Pipe2IpredCrMB = pedf.io.Pipe2IpredCrMB_in[count-
```

(gdb) filter pipe itf Pipe2IpredCrMB_out follow last

Agenda

- ① Debugging Challenges of Dataflow Applications
- 2 Dataflow-Aware Interactive Debugging
- 3 Proof of Concept Implementation
- 4 Case Study: a H.264 Video Decoder
- 6 Conclusion

Conclusion

- Debugging complex applications is challenging
- Lack of high level information about programming frameworks
- Our work: bring debuggers closer to dataflow programming models
 - Better understanding application behavior
 - Keep programmers focused on bug tracking

Conclusion

- Debugging complex applications is challenging
- Lack of high level information about programming frameworks
- Our work: bring debuggers closer to dataflow programming models
 - Better understanding application behavior
 - Keep programmers focused on bug tracking
- Proof-of-concept
 - P2012 dataflow programming environment
 - component debugging published earlier
 - different models, same approach
 - \Rightarrow first step towards programming-model centric debugging
 - GDB and its Python interface
 - missing hooks contributed to the project

Conclusion

- Debugging complex applications is challenging
- Lack of high level information about programming frameworks
- Our work: bring debuggers closer to dataflow programming models
 - Better understanding application behavior
 - Keep programmers focused on bug tracking
- Proof-of-concept
 - P2012 dataflow programming environment
 - component debugging published earlier
 - different models, same approach
 - ⇒ first step towards programming-model centric debugging
 - GDB and its Python interface
 - missing hooks contributed to the project
- Going further with programming-model aware debugging
 - GPU computing, OpenCL API
 - Visualization to aid in understanding app. behavior

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE/LIG LABORATORY

Thanks for your attention