A Novel Approach for Interactive Debugging of Dynamic
Dataflow Embedded Applications

(short version)

Kevin Pouget™f
Miguel Santana”

*STMicroelectronics
Crolles, France

ABSTRACT

In this paper, we propose a new approach for source-level
dataflow debuggers. Going beyond their long-established
ability to support sequential programming languages, we de-
scribe the functionalities a debugger should be able to pro-
vide to debug embedded and parallel dataflow applications.
Then we demonstrate our solution to this problem with a
proof-of-concept debugger targeting the dataflow framework
used on an industrial MPSOC platform. We also explain the
development challenges we faced during the implementation
of this GDB-based debugger.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Code inspections and walk-through; D.3.2 [Programming
Languages|: Dataflow languages

Keywords
Dataflow, Debugging, Embedded, Parallel, MPSoC

1. INTRODUCTION

Since the 1970s/1980s, the dataflow programming model
has been developed as an alternative to the conventional
paradigms based on “von Neumann” processors [4]. This
model was explicitly designed to exploit parallel architec-
tures, and tries to avoid the main bottlenecks of von Neu-
mann hardware: the global program counter and the global
updatable memory. In this model, the key focus is shifted
from the stream of instructions being executed (i.e.: mov-
ing the program counter) towards the dependencies between
the data. In a word, this means that an instruction is not
executed when the program counter reaches it, but rather
when its operands are ready.

In this paper, we primarily focus on dynamic dataflow
languages [2|, which provide a high expressiveness and limit

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’13 March 18-22, 2013, Coimbra, Portugal.

Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$10.00.

Patricia Lopez Cueva’f
Jean-Frangois Mehautf

fUniversity of Grenoble, CEA, LIG
Grenoble, France

the constraints imposed to the developers. Indeed, decidable
models like synchronous dataflow allow correctness analysis
with formal methods, static and deadlock-free actor schedul-
ing, etc., but that comes at the price of a reduced expressive-
ness and ease of modeling. Thus, these models are not al-
ways suitable for all the requirements, especially in the case
of applications processing dynimic streams. So the dataflow
languages targeted by our approach would usually not sup-
port model analysis and verification, but rather emphasized
the programability and the ease of modeling.

Multimedia applications are good candidates for a data-
flow based implementation. Indeed, stream-processing al-
gorithms naturally exhibit dataflow graphs, which simpli-
fies the application design and task implementation. Re-
cent publications like |1}, |[7] show successful demonstrations
of the efficiency of dataflow languages to implement video
decoders.

Executing a dataflow application under the control of an
interactive debugger would allow developers to clearly un-
derstand the subtleties of the execution flow. Wellcrafted
breakpoints and step-by-step execution can highlight prob-
lems in complex situations, which would have been impos-
sible to foresee with manual code analysis or trace tools.
Furthermore, these tools can be used to monitor and pro-
file applications. This allows developers to have realtime
feedback about the actual application execution, which may
depend of the underlying platform or the local environment.

However, it appears that current interactive debuggers
only provide programming-language level features, and ac-
tually only for imperative languages. Apart from threads
and processes, none of the high-level concepts used by de-
velopers to build dataflow applications are materialized in
the debuggers.

We believe that the next generation of debuggers should
take into account the programming model as well as the run-
time environment of applications. Indeed, these events have
a key role in the overall execution and reflect the program-
ming guidelines followed during the development.

Therefore, the main contribution of this article is a novel
approach for the design of interactive debuggers, which de-
scribes the key functionalities that should be provided to
allow an efficient debugging of dataflow applications.

2. MOTIVATIONS

Interactive debugging is a complex activity where develop-
ers try to figure out where the actual code behaviour diverges

from expectations. To do that, they must have a total and
precise control over the application execution.

During the debugging of a dataflow application, develop-
ers face a significant number of challenges which do not exist
in traditional von Neumann codes. In order to improve the
efficiency of the bug tracking activity, the debugger has to
accommodate such difficulties:

Token-Based Execution Firing The execution of a data-
flow actor can only start when the required input data-
tokens have been generated. This concept does not
exist in the von Neumann model, where the execution
of a statement is only conditioned by the path of the
program counter.

Non-Linear Execution When a dataflow assignment in-
struction is executed, the actors connected to this port
become executable. Semantically, the execution flow is
forked and follows not only its normal stream but also
the different outgoing arcs of the graph.

Graph-Based Application Architecture The architec-
ture of the application is structured by its data-depen-
dency graph. However, current debuggers only offer a
sequential view of the source code instruction stream.
All the arcs of graph are unavailable to developers.

In the next section, we present the debugging approach
we designed to help developers to locate more easily the
problems of dataflow applications.

3. HOW TO DEBUG A DATAFLOW APPLI-
CATION?

Our contribution consists of a set of functionalities that a
debugger should implement, in order to shift the main focus
towards the data-controlled style of execution of the data-
flow model. This way, we expect to provide developers with
more efficient tools to debug their dataflow applications. In-
stead of working with threads, processes and function calls,
they will interact with dataflow actors and in and outbound
connections, tight together into a graph of data dependen-
cies.

Stop the Application Before the Error The debugger
should leverage the additional events introduced by the
dataflow model to provided more adapted flow control
mechanisms. Namely, developers should be able to
stop the execution when a specific actor gets fired, or
upon the generation/reception of a specific set of data-
tokens.

Execute the Application Step-by-Step The exchanges
and interactions between the actors should be exploited
to improve step-by-step execution. It should be possi-
ble to navigate in the application architecture based on
the dataflow graph of dependencies. This means that
developers should be able to follow an inter-actor data
transfer the same way they step into a classic function
call.

Inspect the Application State The token distribution is
an important aspect of the application state. So, de-
velopers should be provided with an overview of the
tokens currently available in the data links.

The next section and Section [B] present a proof-of-concept
debugger implementing this approach.

4. DEBUGGING FEATURES FOR AN EM-
BEDDED DATAFLOW FRAMEWORK

In this section, we describe our proof-of-concept debugger
and the features it provides, which implement the approach
described in Section We focus on the embedded system
Platform 2012 (P2012) [5] and its dataflow framework Pred-
icated Ezecution DataFlow (PEDF).

P2012 is a low consumption, parallel and embedded plat-
form research project developed by STMICROELECTRONICS
and CEA. It targets high-definition audio and video pro-
cessing. PEDF is an hybrid dataflow framework designed to
exploit the heterogeneity of P2012 architecture. It provides
a structure dataflow model, as presented in |[4]. PEDF also
offers more advance control features allowing module con-
trollers to modify the behavior of the dataflow graph during
its execution (based on a set of predicates) or run some parts
of the graph at different rates. PEDF defines three classes
of entity:

Filter It is a computing entity, corresponding directly to
the actors of the dataflow model. Filters have in and
outbound data links. The code of a filter is written
in a subset of the C language which will be eventually
synthesized into a hardware accelerator.

Controller There is one controller per module, which is
responsible for the scheduling of the relevant filters,
according to the application algorithm. A controller
runs on a processing element of the fabric.

Module It corresponds to a sub-graph of filters plus a con-
troller. Like filters, modules have in and outbound
data links, corresponding to the unconnected arcs of
the inner graph.

In the remaining of this section, we describe how we can
design a dataflow application with PEDF, as well as the
debugging features associated with each of the steps.

4.1 Designing the Data-Dependency Graph

PEDF dataflow graph is built with MINIﬂ architecture
compilation tool-chain, augmented with PEDF-specific an-
notations. MIND provides a description language to specify
filter’s architecture and interfaces. Module entities are in
charge of defining the inter-filter bindings.

Our contribution: On the debugger side, this graph
structure will be dynamically reconstructed during the ini-
tialization phase of the framework. As it is a key abstraction
for the application architecture, it is made directly available
to developers through all of the dataflow related functional-
ities of the debugger.

4.2 Filters Data Processing

PEDF filters implement the core data processing tasks of
the application. Filters must define a WORK method, imple-
menting one step of the processing.

Our contribution: On the debugger side, we focused on
the flow-of-token aspect, which is key to the dataflow model.
Namely, we enabled the possibility of following a data-token
through a dependency by counting the tokens pushed in and
out of the link. As the model and the implementation ensure

"http://mind.ow2.org/

http://mind.ow2.org/

Dataflow [: >M

-Aware =

Debugger g ==

Traditional @ @ @ @@
Debugger A A
Execution P2012 Fabric
Platform | Cluster 0 | | Cluster 1 |

@ Execution context EH Connection
—> Data-dependency I:I Actor

Figure 1: Two-level debugging of an MPSoC platform.

that the data order is preserved, we can stop the execution
at the right location in a deterministic way.

In the following section, we introduce the debugger imple-
mentation specificities and how we extended GDB to build
this tool.

S. EXTENDING GDB TO SUPPORT DATA-
FLOW DEBUGGING

GDB is the debugger of the GNU project [6]. It has a very
large user community in both general and embedded com-
puting. We decided to base our work on this tool because of
its advanced process inspection and control capabilities and
to simplify user and products handovers. Moreover, recent
versions of GDB export PYTHON bindings, which allow an
easy and efficient development of extensions. Thus, all the
classic functionalities of GDB are available in our debugger.

Figure [1| presents a schematic representation of a tradi-
tional debugger like GDB connected to an MPS0oC platform,
as well as our dataflow-awareness extension. The top part
of the figure schematize the internal representation used to
model the dataflow application:

Our runtime-information capture mechanism relies on in-
ternal function breakpoints set at the entry and exit of the
programming model-related functions exported by the data-
flow framework. Based on the API definition, calling conven-
tions and debug information, we parse the relevant function
arguments to extract the information required to update the
debugger internal state.

Actor objects represent the filters, controllers and mod-
ules of the PEDF application. We keep a reference
to the execution context to which they are bound and
their list of in and outbound connections.

Token objects are created and transmitted over the dif-
ferent debugger dataflow entities. They can trigger an
execution stop when they reach their target actor, or
according to the content of their payload.

Connection objects correspond to a data dependency of
an ACTOR. They are associated with the simulator
entity responsible for the data transfer. These objects
produce or consume TOKEN objects when the corre-
sponding events are produced by the simulator. They
are also responsible for stopping the execution if the
relevant conditions are met.

Link objects bound together an incoming and an outgo-
ing connection. They receive, hold and transmit the
TOKEN objects required by the CONNECTION objects.

In the current PEDF implementation, the framework API
and implementation are rich enough to capture all the infor-
mation required to implement our support. The only static
information we rely on is provided through the standard
DWARF |[3] debug structures.

However, in other dataflow frameworks, further compile-
time information might be required, such as details about
the implementation of the actors or the graph of data de-
pendencies.

Using only standard debug information allows developers
to connect more easily our debugger to their application, as
it does not require a specific recompilation. On the other
side, we could exploit compiler-generated information to en-
rich our model and improve the overall performances.

6. CONCLUSION AND FUTURE WORK

In this article we introduced our new approach to debug-
ging dataflow applications interactively.

We presented the main issues faced by developers when
they try to debug such applications, which are related to
the graph-based architecture, the token-based actor firing
and the non-linear execution. We described our contribution
to lighten these difficulties, an approach where debuggers
are able to provide developers with high-level abstractions
related to the dataflow programming model.

Interactive debugging of complex applications based on
their programming model appears to be a promising direc-
tion to reduce the bug tracking hassle. In future work, we
will investigate how the idea of leveraging the programming
model to improve the debugging experience can be applied
to different models, and how visualization can help develop-
ers to better understand the details of the execution.

7. REFERENCES

[1] E. Bezati, M. Mattavelli, and M. Raulet. RVC-CAL
dataflow implementations of MPEG AVC/H.264
CABAC decoding. In Design and Architectures for
Signal and Image Processing (DASIP), 2010
Conference on, pages 207 —213, United Kingdom, 2010.

[2] S. Bhattacharyya, E. Deprettere, and T. B.D. Dynamic
dataflow graphs. In Handbook of Signal Processing
Systems. Springer, 2012.

[3] Free Standards Group. The DWARF debugging
standard. http://dwarf.freestandards.org/, 2010.

[4] W. M. Johnston, J. R. P. Hanna, Richard, and
J. Millar. Advances in dataflow programming
languages. ACM Comput. Surv, 36:1-34, 2004.

[5] STMicroelectronics and CEA. Platform 2012: A
Many-core Programmable Accelerator for
Ultra-Efficient Embedded Computing in Nanometer
Technology, 2010.

[6] The Gnu Project. GDB.
http://www.gnu.org/software/gdb/.

[7] H. Yviquel, E. Casseau, M. Wipliez, and M. Raulet.
Efficient multicore scheduling of dataflow process
networks. In Signal Processing Systems (SiPS), 2011
IEEE Workshop on, pages 198 — 203, Liban, Dec. 2011.

http://dwarf.freestandards.org/
http://www.gnu.org/software/gdb/

	Introduction
	Motivations
	How to Debug A Dataflow Application?
	Debugging Features for an Embedded Dataflow Framework
	Designing the Data-Dependency Graph
	Filters Data Processing

	Extending GDB to Support Dataflow Debugging
	Conclusion and Future Work
	References

