
A Novel Approach for Interactive Debugging of
Dynamic Dataflow Embedded Applications
Kevin Pouget†*, Patricia López-Cueva†*, Miguel Santana†and Jean-François Méhaut*

*University of Grenoble, CEA, LIG and †STMicroelectronics

March 18-22
2013

SAC — Symposium on Applied Computing
Embedded Systems Special Track

Coimbra
Portugal

Debugging multicore applications running on embedded platforms is challenging.
Dynamic dataflow programming makes it a daunting task.

Embedded System Development

HD Multimedia Applications

⇒ High performance expectations

I H.265 HEVC

I Augmented reality

I 4K digital television

I . . .

Sharp Time-To-Market Rqrmts

⇒ Important demand for:
I Powerful parallel architectures:

I MultiProcessor-on-Chip (MPSoC)

I Convenient programming models:
I Dynamic dataflow programming

I Efficient verif. and valid. tools:
I Our research contribution

Dataflow Programming

I Alternative to von Neumann
imperative model (↔ C/ASM)

I Instructions executed when their
operands are ready, not when the
instruction pointer (aka. program
counter, %PC) reaches it

⇒ Inherently parallel

× HW did not follow the trend

⇒ Only hybrid imperative/object
+ dataflow frameworks available

+

*

+

12

 2 3

Decidable Dataflow

I Correctness analysis

I Deadlock-free static scheduling

I Powerful optimization

but:
I Strong constraints imposed to dev.
I Reduced expressiveness

I no dynamic problem

Dynamic Dataflow

I Increased modeling flexibility
I Conditional token emission/rcption
I Variable actor input/output rates

I Adaptive signal processing

but:

I Debugging is not straightforward ,

ctlr

dyn_filter

out_1

out_2in

WORK() { /* dyn_filter.c */

flg = ctlr.next()

if (flg)

dat = ctlr.next()

out_1.send(treat(dat))

else

ctr = ctlr.next()

for (i in 0:ctr)

nxt = in.next()

out_2.send(treat(nxt))

1

Dataflow Debugging Challenges

Single-threaded applications
I sequential exec controlled by %PC
I only one execution context
I simple flow-control mechanisms:

I functions, if-conditions, loops

Multi-threaded applications
I multi-sequential execution
I system view: 1 thrd 6=⇒ 1 filter
I flat organization:

I no inter-thread relationship

Dataflow applications

Graph-Based Architect.

pipe

pred_controller

ipredhwcfg

ipf

Token-Based Execution

I concurrent filtr exec.

I no function calls

I tokens sent/received

Non-Linear Instructions
after this instruction:

out 1.send(treat(dat)),

I dyn filr continues
I out 1 can run

Objective

Provide debugger users with means to better understand the state
of the dataflow execution and easily reach key transition events.

Contribution

Dataflow Aware Debugging

I Graph of dataflow data-dependencies
I Breakpoints on dataflow-related events
I Information about actor interactions
I Hide the inherent complexity of system low-level aspects

I focus on the execution of user-relevant code

Proof-of-Concept Environment

The Gnu Debugger — GDB
I Extendable with Python API
I Adapted to low level debugging
I Patches contributed to FSF

Predicated Execution Dataflow —
PEDF

I P2012 dataflow framework
I Dynamic dataflow model
I Designed to exploit heterogeneity

Platform 2012 — P2012
I ST/CEA MPSoC research platform
I Heterogeneous environment
I 4x16 CPU OS-less computing fabric

Perspectives

I Investigate other programming models
I OpenCL and GPU computing

I Generalize the approach to programming-model centric debugging
I Use visualization tools to better represent the execution details
I Analyze performance slowdown vs. bug localization speedup

*firstname.lastname@imag.fr http://www.liglab.fr/ †firstname.lastname@st.com http://www.st.com/


